-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsa.py
executable file
·225 lines (177 loc) · 7.32 KB
/
sa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/bin/env python
import psutil, os, random, time, numpy as np, math, copy, sys, argparse, matplotlib.pyplot as plt
parser = argparse.ArgumentParser()
parser.add_argument("-d", help="dataset file", default=False)
parser.add_argument("-n", help="noninteractive", default=False)
parser.add_argument("-k", help="trucks", default=1)
parser.add_argument("-r", help="trucks", default=20)
args = parser.parse_args()
memory = psutil.Process(os.getpid()).memory_info
time_start = None
report_file = open("report.csv", "w")
# Déclaration de fonctions
def generate_cities(howmany = int(args.r), max_coordinates = 100):
return [random.sample(range(max_coordinates), 2) for _ in range(howmany)]
def generate_random_tour(cities):
city_count = len(cities)
return random.sample(range(city_count), city_count)
def generate_good_random_tour(cities, howmany=10000):
best_tour = generate_random_tour(cities)
lowest = distance(best_tour, cities)
for _ in range(howmany):
tour = generate_random_tour(cities)
dist = distance(tour, cities)
if dist < lowest:
lowest = dist
best_tour = copy.copy(tour)
print("Lowest tour has distance {}".format(lowest))
return best_tour
def import_dataset(filename):
with open(filename) as fp:
line = fp.readline()
arr = []
while line:
xy = line.strip().split(" ")
xy = [int(e) for e in xy]
#print(xy)
arr.append(xy)
line = fp.readline()
return arr
def dataset_name():
return args.d
def distance_between(tour, cities, i, j):
city_count = len(cities)
return sum([math.sqrt(sum([(cities[tour[(k+1) % city_count]][d] - cities[tour[k % city_count]][d])**2 for d in [0,1] ])) for k in [j,j-1,i,i-1]])
def distance_to_next(tour, cities, index):
city_count = len(cities)
return sum([math.sqrt(sum([(cities[tour[(k+1) % city_count]][d] - cities[tour[k % city_count]][d])**2 for d in [0,1] ])) for k in [index]])
def distance(tour, cities):
city_count = len(cities)
return sum([math.sqrt(sum([(cities[tour[(k+1) % city_count]][d] - cities[tour[k % city_count]][d])**2 for d in [0,1] ])) for k in range(city_count)])
def temperature_noninteractive():
return np.logspace(0,5,num=100000)[::-1]
def temperature_interactive():
alpha = 0.999
temp = 10 ** 2
while True:
temp = alpha * temp
if temp < 0.1:
temp = 10 ** 1
yield temp
def explain_tour(tour, cities):
lgth = len(tour)
for step in range(lgth):
curr = tour[step % lgth]
next = tour[(step + 1) % lgth]
distance = distance_between(tour, cities, step, step + 1)
print("{} -> {} \t(distance: {:10.4f})\t From {}, To: {}".format(curr, next, distance, cities[curr], cities[next]))
def live_plot(tour, cities):
city_count = len(cities)
cities_x = [cities[tour[i % city_count]][0] for i in range(city_count + 1)]
cities_y = [cities[tour[i % city_count]][1] for i in range(city_count + 1)]
plt.clf()
plt.plot(cities_x, cities_y, 'xb-')
plt.pause(0.1)
def report(what):
report_file.write(what + "\n")
def array_part_loop(arr, start, end):
arr_len = len(arr)
ret = []
if start > end:
nb_elements = arr_len - start
nb_elements += end
else:
return arr[start:(end + 1) % arr_len]
for i in range(nb_elements):
ret.append(arr[(start + i) % arr_len])
ret.append(arr[(start + nb_elements) % arr_len])
return ret
def SA(cities, temperatures):
iteration = 0
tour = generate_good_random_tour(cities)
city_count = len(cities)
lowest_tour = None
lowest_distance = np.inf
report("iterations,temps,distance,temperature,memory")
try:
for temperature in temperatures():
iteration = iteration + 1
[i,j] = sorted(random.sample(range(city_count),2))
newTour = tour[:i] + tour[j:j+1] + tour[i+1:j] + tour[i:i+1] + tour[j+1:]
old_distances = distance_between(tour, cities, i, j)
new_distances = distance_between(newTour, cities, i, j)
new_tour_distance = distance(newTour, cities)
if math.exp( (old_distances - new_distances) / temperature) > random.random():
tour = copy.copy(newTour)
if new_tour_distance < lowest_distance:
lowest_distance = new_tour_distance
lowest_tour = copy.copy(tour)
if(iteration % 5000 == 0):
seconds_elapsed = time.time() - time_start
print("Iteration: " + str(iteration))
print("Elapsed: {:10.4f}s".format(seconds_elapsed))
print("New distance: {:10.4f}".format(new_tour_distance))
print("Best distance: {:10.4f}".format(lowest_distance))
print("Temperature: " + str(temperature))
print("Memory used: " + str(memory().rss))
print("======")
report("{},{},{},{},{}".format(iteration, seconds_elapsed, lowest_distance, temperature, memory().rss))
live_plot(lowest_tour, cities)
except KeyboardInterrupt:
print("Interrupted")
if lowest_tour == None:
return tour
else:
return lowest_tour
# Initialisation des données
plt.ion()
plt.show()
external_dataset = dataset_name()
time_start = time.time()
if external_dataset:
cities = import_dataset(external_dataset)
else:
cities = generate_cities()
city_count = len(cities)
# Application de la métaheuristique
if args.n:
# Non interactif: On est dans une range de solutions relativement petite
print("Run non interactif, fin dans 30s")
tour = SA(cities, temperature_noninteractive)
else:
# Interactif: tourne à l'infini jusqu'à l'arrêt
print("Run interactif, Ctrl+c quand fini")
tour = SA(cities, temperature_interactive)
report_file.close()
# Affichage de détails
explain_tour(tour, cities)
# Division en k camions
k = int(args.k)
tour_distance = distance(tour, cities)
position_first_city = tour.index(0)
position_relative_next_stop_city = 0
initial_tour = copy.copy(tour)
for truck in range(k-1):
distance_cumulee = 0
while distance_cumulee < (tour_distance / k):
curr = initial_tour[(position_first_city + position_relative_next_stop_city) % city_count]
distance = distance_to_next(initial_tour, cities, position_first_city + position_relative_next_stop_city)
distance_cumulee += distance
position_relative_next_stop_city += 1
tour.insert((position_first_city + position_relative_next_stop_city) % city_count, 0)
if int(args.k) > 1:
# On insère le dernier tour
zero_positions = [i for i, e in enumerate(tour) if e == 0]
number_zeros = len(zero_positions)
plt.clf()
for zero_pos_i in range(len(zero_positions)):
tour_start_index = zero_positions[zero_pos_i]
tour_end_index = zero_positions[(zero_pos_i + 1) % number_zeros]
truck_tour = array_part_loop(tour, tour_start_index, tour_end_index)
truck_tour_len = len(truck_tour)
cities_x = [cities[truck_tour[i % truck_tour_len]][0] for i in range(truck_tour_len + 1)]
cities_y = [cities[truck_tour[i % truck_tour_len]][1] for i in range(truck_tour_len + 1)]
plt.plot(cities_x, cities_y, '-')
plt.pause(0.1)
while True:
time.sleep(1)