forked from hs105/Cognitive-Control-Testbed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main_DSP_entropy_2agents.m
439 lines (370 loc) · 17 KB
/
Main_DSP_entropy_2agents.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
%function [ARMSE_f1,ARMSE1] = Main2(BW);
clear classes;
clc;
global g rho_0 Qsqrt Delta M H gamma QPtArray wPtArray nPts;
[QPtArray,wPtArray,nPts] = findSigmaPts(3);
%%%================ Parameter definitions ==================
g = 9.8; % gravity in m/s2
fs = 10; % Sampling rate 10kHz;
fs_ctr = 1; % running freuqncy of ctr; Defining the update frequency of CTR
T = 1/fs;
Delta = T;
rho_0 = 1.754; %prop. constant in air density
gamma = 1.49e-4; %decaying par. in air density
c = 2.999e8; % speed of propagation m/s
fc = 2*pi*10.4e9; % 10.4Ghz X-band radar
tf = 10e-9; % rise/fall time: 10 ns;
r_snr0 = 80e3; % range when snr = 0db; 50km
lmd_min = 10e-6; % min of lambda: 10 mu seconds duration of envelope
lmd_max = 300e-6; % max of lambda: 100 mu seconds
d_lmd = 10e-6; % grid size for lambda
b_min = -300e8; % min of chirp rate: 10,000
b_max = 300e8; % max of chirp rate: 500,000
d_b = 50e8; % grid size for chirp rate
%delta_f = 15e3; % frequency sweep
%BW = Inf; % bandwidth
BW = 8e6;
Lambda = diag([1,1,1]); % weight matrix showing signaficence of state [pos, vel, ball_coef]
seed = 2e5; rand('seed',seed);
%%%============= Parameters for model ==================
q1 = 0.01;
q2 = 0.01;
Q = [q1*Delta^3/3 q1*Delta^2/2 0;
q1*Delta^2/2 q1*Delta 0;
0 0 q2*Delta]; %Process Noise Covariance
Qsqrt = mysqrt(Q);
nExpt = 500; % number of MC runs
t_sim = 30; % simulation time: 30s
N = floor(t_sim/Delta); % number of time steps
M = 30e3; % horizontal distance of the radar to object (km)
H = 30; % radar height (m)
discount = .5; % discount factor in RL
gamma_back = 1; % backward discount factor
lf = 1; % Learning factor in RL
lfRL2 = lf;
lfRL3 = lf;
epsilon = 0; % epsilon-greedy (epsilon*100% of times will be random)
epsilonRL2 = epsilon; % epsilon of agent2
epsilonRL3 = epsilon; % epsilon of agent3
window = 10;
numPlanningTrials = 3; % must NOT be greater than number of actions
%%%================ Generate mesh point for [lmd, b] ========
lmd0 = lmd_min : d_lmd : lmd_max;
b0 = [b_min : d_b : b_max];
%%pick up the radar parameters that satisfies the bandwidth constraint
para = pick_theta(lmd0,b0,BW);
MSE = zeros(nExpt,3,N);
estMSE = zeros(nExpt,3,N);
MSE_f = zeros(nExpt,3,N);
estMSE_f= zeros(nExpt,3,N);
MSE_RL = zeros(nExpt,3,N);
estMSE_RL= zeros(nExpt,3,N);
fprintf('Grid points %d x %d = %d\n',length(lmd0),length(b0),length(lmd0)*length(b0));
%%%================ Initialize CKF ==========================
time_old = zeros(nExpt,N);
time_new = zeros(nExpt,N); % agent1
time_new2 = zeros(nExpt,N); % agent2
time_new3 = zeros(nExpt,N); % agent3
entropyBank = zeros(nExpt, N); % placeholder for entropies for RL method (agent1)
entropyBank2 = zeros(nExpt, N); % placeholder for entropies for RL method (agent2)
entropyBank3 = zeros(nExpt, N); % placeholder for entropies for RL method (agent2)
entropyBankf = zeros(nExpt, N); % placeholder for entropies for fixed-waveform
for expt = 1:nExpt
%% Fixed waveform selection
wf_fix_idx = fix(rand*length(para) + 1);
lmd_fixed = para(1,wf_fix_idx);
b_fixed = para(2,wf_fix_idx);
% Q-Learning object with 1 state, 764 actions, alpha=.5, gamma=.5, and
% epsilon=0 (which means it is completely greedy):
clear agent;
clear agent2;
clear agent3;
agent = QL(1, 1:382, discount, lf, epsilon);
agent2 = QL(1, 1:382, discount, lfRL2, epsilonRL2);
agent3 = QL(1, 1:382, discount, lfRL3, epsilonRL3);
x = [61e3; 3048; 19161]; %Initial state
xkk = [61.5e3; 3000; 19100];%[62e3; 3400; 19100];
Skk = sqrt(diag([(1e3)^2; (100)^2; 1e4]));
xkk_f = xkk;
Skk_f = Skk;
xkk_RL = xkk;
Skk_RL = Skk;
preEntropy = det(Lambda*(Skk_RL*Skk_RL')); % initial entropy
xkk_RL2 = xkk;
Skk_RL2 = Skk;
preEntropy2 = det(Lambda*(Skk_RL2*Skk_RL2')); % initial entropy
xkk_RL3 = xkk;
Skk_RL3 = Skk;
preEntropy3 = det(Lambda*(Skk_RL3*Skk_RL2')); % initial entropy
fprintf('Monte Carlo runs: %d out of %d\n',expt, nExpt);
%%%==================== Main loop ===========================
for k = 1 : N,
%%% learning coef. update
% agent.alpha = .8;
%%% ========= State and Mst Eqs ========================
x = StateEq(x)+ Qsqrt*randn(3,1);
z_idl = MstEq(x);
%%% ========== Predict ================================
[xkk1,Skk1] = Predict(xkk,Skk);
[xkk1_f,Skk1_f] = Predict(xkk_f,Skk_f);
[xkk1_RL,Skk1_RL] = Predict(xkk_RL,Skk_RL);
[xkk1_RL2,Skk1_RL2] = Predict(xkk_RL2,Skk_RL2);
[xkk1_RL3,Skk1_RL3] = Predict(xkk_RL3,Skk_RL3);
%%%============ Subroutine for fixed waveform =====================
R_f = computeR_FI(c, fc, lmd_fixed, b_fixed, r_snr0, M, xkk1_f(1)-H);
Rsqrt_f = mysqrt(R_f);
z_f = z_idl + Rsqrt_f* randn(2,1);
[xkk_f,Skk_f] = Update(xkk1_f,Skk1_f,z_f,Rsqrt_f);
fEntropy = det(Lambda*(Skk_f*Skk_f'));
entropyBankf(expt,k) = fEntropy;
%%%================================================================
%%% ========== new meas. cov. as per new theta =======
tic
if (k==1) || (k<30) || (rem(k,1/(fs_ctr*T))==0),
for i = 1 : length(para),
theta = para(:,i)'; % fetch grid point (lmd, b)
lmd = theta(1);
b = theta(2);
%%% Calculate measurement covariance: R
R = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1(1)-H);
Rsqrt = mysqrt(R);
%%% Approximate cost function: J(\theta)
Skk = ComputeSkk(xkk1,Skk1,Rsqrt);% + p_ratio*Skk_p;
J(i)= trace(Lambda*(Skk*Skk'));
end
[min_J,idx] = min(J); % find the minimum of J
lmd = para(1,idx);
b = para(2,idx);
wf_lmd(expt, k) = lmd;
wf_b(expt, k) = b;
wf_idx(expt,k) = idx;
end
%%% Calculate measurement covariance R using new waveform
R = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1(1)-H);
Rsqrt = mysqrt(R);
mmm = randn(2,1);
z = z_idl + Rsqrt*mmm;
[xkk,Skk] = Update(xkk1,Skk1,z,Rsqrt);
entropyDyOpBank(expt,k) = det(Lambda*(Skk_RL*Skk_RL'));
time_old(expt,k) = toc;
%%%================================================================
%% RL:
predictedEntropy = zeros(1,length(para)); % init. vector to speed up
predictedReward = zeros(1,length(para)); % init. vector to speed up
reward = zeros(1,N);
tic
if (k==1) || (k<30) || (rem(k,1/(fs_ctr*T))==0),
%%%%% Planning %%%%%
tester = randGenerator(numPlanningTrials, length(para));
for count = 1 : length(tester)%length(para),
i = tester(count);
theta = para(:,i)'; % fetch grid point (lmd, b)
lmd = theta(1);
b = theta(2);
%%% Calculate measurement covariance: R
R_RL = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL(1)-H); %%%
Rsqrt_RL = mysqrt(R_RL); %%%
Skk_RL = ComputeSkk(xkk1_RL,Skk1_RL,Rsqrt_RL); %%%
predictedEntropy(count) = det(Lambda*(Skk_RL*Skk_RL'));
reward_rel = abs(log(abs(preEntropy - predictedEntropy(count))));
% reward_abs = 1/abs(log(predicted Entropy(count)));
predictedReward(i) = reward_rel*sign(preEntropy - predictedEntropy(count));
% learing from prediction
agent = agent.learning(1,1,i,predictedReward(i)); % there is only one state (1)
end
%%%%% Learning %%%%%
% trigering epsilon-greedy action
idx = agent.egAction(1); % index of eps-greedy action
if idx == 0 % no learning yet
idx = fix(rand*length(para) + 1); % random selection
end
lmd = para(1,idx);
b = para(2,idx);
wf_lmd(expt, k) = lmd;
wf_b(expt, k) = b;
wf_idx(expt,k) = idx;
% computing R as the result of the applied action
R_RL = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL(1)-H); %%%
Rsqrt_RL = mysqrt(R_RL); %%%
end
z_RL = z_idl + Rsqrt_RL*mmm; %%%
[xkk_RL,Skk_RL] = Update(xkk1_RL,Skk1_RL,z_RL,Rsqrt_RL); %%%
% computing the new entropic state
newEntropy = det(Lambda*(Skk_RL*Skk_RL'));
% computing the reward
reward_rel = abs(log(abs(preEntropy - newEntropy)));
reward_abs = 1/abs(log(newEntropy));
reward(k) = reward_rel*sign(preEntropy - newEntropy);
% reward(i)
% learning by Q-learning method
agent = agent.learning(1,1,idx,reward(k)); % there is only one state (1)
% updating the previous entropy
preEntropy = newEntropy;
time_new(expt,k) = toc;
entropyBank(expt,k) = preEntropy;
%%%================================================================
%% RL2:
predictedEntropy2 = zeros(1,length(para)); % init. vector to speed up
predictedReward2 = zeros(1,length(para)); % init. vector to speed up
reward2 = zeros(1,N);
tic
if (k==1) || (k<30) || (rem(k,1/(fs_ctr*T))==0),
%%%%% Planning %%%%%
% tester = randGenerator(numPlanningTrials, length(para));
for count = 1 : length(tester)%length(para),
i = tester(count);
theta = para(:,i)'; % fetch grid point (lmd, b)
lmd = theta(1);
b = theta(2);
%%% Calculate measurement covariance: R
R_RL2 = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL2(1)-H); %%%
Rsqrt_RL2 = mysqrt(R_RL2); %%%
Skk_RL2 = ComputeSkk(xkk1_RL2,Skk1_RL2,Rsqrt_RL2); %%%
predictedEntropy2(count) = det(Lambda*(Skk_RL2*Skk_RL2'));
reward_rel2 = abs(log(abs(preEntropy2 - predictedEntropy2(count))));
% reward_abs = 1/abs(log(predicted Entropy(count)));
predictedReward2(i) = reward_rel2*sign(preEntropy2 - predictedEntropy2(count));
% learing from prediction
agent2 = agent2.dpLearning(1,1,i,predictedReward2(i)); % there is only one state (1)
end
%%%%% Learning %%%%%
% trigering epsilon-greedy action
idx = agent2.egAction(1); % index of eps-greedy action
if idx == 0 % no learning yet
idx = fix(rand*length(para) + 1); % random selection
end
lmd = para(1,idx);
b = para(2,idx);
wf_lmd(expt, k) = lmd;
wf_b(expt, k) = b;
wf_idx(expt,k) = idx;
% computing R as the result of the applied action
R_RL2 = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL2(1)-H); %%%
Rsqrt_RL2 = mysqrt(R_RL2); %%%
end
z_RL2 = z_idl + Rsqrt_RL2*mmm; %%%
[xkk_RL2,Skk_RL2] = Update(xkk1_RL2,Skk1_RL2,z_RL2,Rsqrt_RL2); %%%
% computing the new entropic state
newEntropy2 = det(Lambda*(Skk_RL2*Skk_RL2'));
% computing the reward
reward_rel2 = abs(log(abs(preEntropy2 - newEntropy2)));
reward_abs2 = 1/abs(log(newEntropy2));
reward2(k) = reward_rel2*sign(preEntropy2 - newEntropy2);
% reward(i)
% learning by Q-learning method
agent2 = agent2.dpLearning(1,1,idx,reward2(k)); % there is only one state (1)
% updating the previous entropy
preEntropy2 = newEntropy2;
time_new2(expt,k) = toc;
entropyBank2(expt,k) = preEntropy2;
%%%================================================================
%% RL3:
% predictedEntropy3 = zeros(1,length(para)); % init. vector to speed up
% predictedReward3 = zeros(1,length(para)); % init. vector to speed up
% reward3 = zeros(1,N);
% tic
% if (k==1) || (k<30) || (rem(k,1/(fs_ctr*T))==0),
% %%%%% Planning %%%%%
% % tester = randWindowGenerator(numPlanningTrials, agent3.egAction(1), window, length(para));
% for count = 1 : length(tester)%length(para),
% i = tester(count);
% theta = para(:,i)'; % fetch grid point (lmd, b)
% lmd = theta(1);
% b = theta(2);
%
% %%% Calculate measurement covariance: R
% R_RL3 = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL3(1)-H); %%%
% Rsqrt_RL3 = mysqrt(R_RL3); %%%
% Skk_RL3 = ComputeSkk(xkk1_RL3,Skk1_RL3,Rsqrt_RL3); %%%
% predictedEntropy3(count) = det(Lambda*(Skk_RL3*Skk_RL3'));
% reward_rel3 = abs(log(abs(preEntropy3 - predictedEntropy3(count))));
% predictedReward3(i) = reward_rel3*sign(preEntropy3 - predictedEntropy3(count));
% % learing from prediction
% agent3 = agent3.dpLearning(1,1,i,predictedReward3(i)); % there is only one state (1)
% end
%
% %%%%% Learning %%%%%
% % trigering epsilon-greedy action
% idx = agent3.egAction(1); % index of eps-greedy action
% if idx == 0 % no learning yet
% idx = fix(rand*length(para) + 1); % random selection
% end
% lmd = para(1,idx);
% b = para(2,idx);
% wf_lmd(expt, k) = lmd;
% wf_b(expt, k) = b;
% wf_idx(expt,k) = idx;
%
% % computing R as the result of the applied action
% R_RL3 = computeR_FI(c, fc, lmd, b, r_snr0, M, xkk1_RL3(1)-H); %%%
% Rsqrt_RL3 = mysqrt(R_RL3); %%%
% end
%
% z_RL3 = z_idl + Rsqrt_RL3*mmm; %%%
% [xkk_RL3,Skk_RL3] = Update(xkk1_RL3,Skk1_RL3,z_RL3,Rsqrt_RL3); %%%
%
% % computing the new entropic state
% newEntropy3 = det(Lambda*(Skk_RL3*Skk_RL3'));
%
% % computing the reward
% reward_rel3 = abs(log(abs(preEntropy3 - newEntropy3)));
% reward_abs3 = 1/abs(log(newEntropy3));
% reward3(k) = reward_rel3*sign(preEntropy3 - newEntropy3);
% % reward(i)
%
% % learning by Q-learning method
% agent3 = agent3.dpLearning(1,1,idx,reward3(k)); % there is only one state (1)
%
% % updating the previous entropy
% preEntropy3 = newEntropy3;
% time_new3(expt,k) = toc;
% entropyBank3(expt,k) = preEntropy3;
%%%================================================================
end % time
end % MC run
% timewdw = [1:N-2];
% %%======== Calculate mean =========================================
% xArray = mean(xArray_temp,3);
% xestArray = mean(xestArray_temp,3);
% xestArray_f = mean(xestArray_temp_f,3);
% xestArray_RL = mean(xestArray_temp_RL,3);
%
% % MSE = MSE/nExpt;
% % RMSE = MSE.^(0.5);
% % MSE_f = MSE_f/nExpt;
% % RMSE_f = MSE_f.^(0.5);
%
% d_ratio = 0.25;
%
% RMSE1 = reshape(mean(MSE),3,N).^(0.5);
% errbar1 = d_ratio*reshape(std(MSE),3,N).^(0.5);
%
% RMSE_f1 = reshape(mean(MSE_f),3,N).^(0.5);
% errbar1_f = d_ratio*reshape(std(MSE_f),3,N).^(0.5);
%
% RMSE_RL1 = reshape(mean(MSE_RL),3,N).^(0.5);
% errbar1_RL = d_ratio*reshape(std(MSE_RL),3,N).^(0.5);
%
% % ARMSE1 = mean(RMSE1');
% % ARMSE_f1 = mean(RMSE_f1');
%
% ARMSE1 = mean(mean(MSE,3),1).^0.5;
% ARMSE_f1 = mean(mean(MSE_f,3),1).^0.5;
% ARMSE_RL1 = mean(mean(MSE_RL,3),1).^0.5;
%%%=================================================================
%%%%%%%%%%%%%%%%%%RMSE plots%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
meanEntropy = mean(entropyBank);
semilogy(1:N,meanEntropy,'g-d','linewidth',1)
hold on
meanEntropy2 = mean(entropyBank2);
semilogy(1:N,meanEntropy2,'r-*','linewidth',1)
hold on
% meanEntropy3 = mean(entropyBank3);
% semilogy(1:N,meanEntropy3,'b-o','linewidth',1)
meanEntropyDyOpBank = mean(entropyDyOpBank);
semilogy(1:N,meanEntropyDyOpBank,'b-*','linewidth',1)
hold on
meanEntropyf = mean(entropyBankf);
semilogy(1:N,meanEntropyf,'g-d','linewidth',1)
xlabel('Perception-action cycles');
ylabel('Entropic-state');