-
-
Notifications
You must be signed in to change notification settings - Fork 11
/
app.py
146 lines (126 loc) · 4.35 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import gradio as gr
import torchaudio
import time
from datetime import datetime
from tortoise.api import TextToSpeech
from tortoise.utils.audio import load_audio, load_voice, load_voices
VOICE_OPTIONS = [
"random", # special option for random voice
"custom_voice", # special option for custom voice
"disabled", # special option for disabled voice
]
def inference(text, emotion, prompt, voice, mic_audio, voice_b, voice_c, preset, seed):
if voice != "custom_voice":
voices = [voice]
else:
voices = []
if voice_b != "disabled":
voices.append(voice_b)
if voice_c != "disabled":
voices.append(voice_c)
if emotion != "None/Custom":
text = f"[I am really {emotion.lower()},] {text}"
elif prompt.strip() != "":
text = f"[{prompt},] {text}"
c = None
if voice == "custom_voice":
if mic_audio is None:
raise gr.Error("Please provide audio from mic when choosing custom voice")
c = load_audio(mic_audio, 22050)
if len(voices) == 1 or len(voices) == 0:
if voice == "custom_voice":
voice_samples, conditioning_latents = [c], None
else:
voice_samples, conditioning_latents = load_voice(voice)
else:
voice_samples, conditioning_latents = load_voices(voices)
if voice == "custom_voice":
voice_samples.extend([c])
sample_voice = voice_samples[0] if len(voice_samples) else None
start_time = time.time()
gen, _ = tts.tts_with_preset(
text,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
k=3,
)
with open("Tortoise_TTS_Runs.log", "a") as f:
f.write(
f"{datetime.now()} | Voice: {','.join(voices)} | Text: {text} | Quality: {preset} | Time Taken (s): {time.time()-start_time} | Seed: {seed}\n"
)
return (
(22050, sample_voice.squeeze().cpu().numpy()),
(24000, gen[0].squeeze().cpu().numpy()),
(24000, gen[1].squeeze().cpu().numpy()),
(24000, gen[2].squeeze().cpu().numpy()),
)
def main():
text = gr.Textbox(lines=4, label="Text:")
emotion = gr.Radio(
["None/Custom", "Happy", "Sad", "Angry", "Disgusted", "Arrogant"],
value="None/Custom",
label="Select emotion:",
type="value",
)
prompt = gr.Textbox(lines=1, label="Enter prompt if [Custom] emotion:")
preset = gr.Radio(
["ultra_fast", "fast", "standard", "high_quality"],
value="fast",
label="Preset mode (determines quality with tradeoff over speed):",
type="value",
)
voice = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
value="angie",
label="Select voice:",
type="value",
)
mic_audio = gr.Audio(
label="Record voice (when selected custom_voice):",
source="microphone",
type="filepath",
)
voice_b = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
value="disabled",
label="(Optional) Select second voice:",
type="value",
)
voice_c = gr.Dropdown(
os.listdir(os.path.join("tortoise", "voices")) + VOICE_OPTIONS,
value="disabled",
label="(Optional) Select third voice:",
type="value",
)
seed = gr.Number(value=0, precision=0, label="Seed (for reproducibility):")
selected_voice = gr.Audio(label="Sample of selected voice (first):")
output_audio_1 = gr.Audio(label="Output [Candidate 1]:")
output_audio_2 = gr.Audio(label="Output [Candidate 2]:")
output_audio_3 = gr.Audio(label="Output [Candidate 3]:")
interface = gr.Interface(
fn=inference,
inputs=[
text,
emotion,
prompt,
voice,
mic_audio,
voice_b,
voice_c,
preset,
seed,
],
outputs=[selected_voice, output_audio_1, output_audio_2, output_audio_3],
)
interface.launch(share=True)
if __name__ == "__main__":
tts = TextToSpeech()
with open("Tortoise_TTS_Runs.log", "a") as f:
f.write(
f"\n\n-------------------------Tortoise TTS Logs, {datetime.now()}-------------------------\n"
)
main()