-
Notifications
You must be signed in to change notification settings - Fork 3
/
chercheur2vers.py
534 lines (475 loc) · 26.7 KB
/
chercheur2vers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
from collections import Counter
import numpy as np
import pandas as pd
from tqdm import tqdm
from nltk.tokenize import RegexpTokenizer
from sklearn.model_selection import train_test_split
from keras import backend as K
from keras import Input
from keras.models import Model, Sequential
from keras.layers import LSTM, TimeDistributed, Dropout, BatchNormalization, Concatenate, Dense, Lambda, GRU, LeakyReLU
def model_test(t_p=51, n_p=38, dim_emb=300, n_rnnphonvers=300, n_rnn_phon15=420,
n_dense_particulier=50, n_dense_particulier2=30, n_dense1=25):
# phonemes
phonemes_in = Input(shape=(9, t_p, n_p), name="phonemes_input")
rnn_phon = GRU(units=n_rnnphonvers, activation="tanh", name="embedding_phonemes")
phonems_v15 = TimeDistributed(rnn_phon, name="RNN_phonemes_vers_unique")(phonemes_in)
phonems_v14 = Lambda(lambda x: x[:, :-1, :], output_shape=(8, n_rnnphonvers), name="phonemes_v")(phonems_v15)
phonems_cible = Lambda(lambda x: x[:, -1, :], output_shape=(n_rnnphonvers,), name="phonemes_cible")(phonems_v15)
rnn_phon_vers = LSTM(units=n_rnn_phon15, activation="tanh", name="RNN_phonemes_total")(phonems_v14)
phonemes_tout = Concatenate(axis=1, name="concat_phonemes")([rnn_phon_vers, phonems_cible])
phonemes_tout = Dense(units=n_dense_particulier, name="dense_phonemes")(phonemes_tout)
phonemes_tout = LeakyReLU(0.2, name="activation_dense_phonemes")(phonemes_tout)
phonemes_tout = Dropout(rate=0.1, name="dropout_phonemes")(phonemes_tout)
phonemes_tout = BatchNormalization(name="batchnorm_phonemes")(phonemes_tout)
phonemes_tout2 = Dense(units=n_dense_particulier2, name="dense_phonemes2")(phonemes_tout)
phonemes_tout2 = LeakyReLU(0.2, name="activation_dense_phonemes2")(phonemes_tout2)
phonemes_tout2 = Dropout(rate=0.1, name="dropout_phonemes2")(phonemes_tout2)
phonemes_tout2 = BatchNormalization(name="batchnorm_phonemes2")(phonemes_tout2)
# word embedding
words_in = Input(shape=(9, dim_emb), name="words_input")
emb_reduc = Sequential(name="dim_reduction")
emb_reduc.add(Dense(units=n_rnnphonvers, activation="tanh"))
emb_reduc.add(Lambda(lambda t: K.l2_normalize(1000*t, axis=1)))
emb_reduc.add(Dropout(rate=0.1))
emb_reduc.add(BatchNormalization())
words_v15 = TimeDistributed(emb_reduc)(words_in)
words_v14 = Lambda(lambda x: x[:, :-1, :], output_shape=(8, n_rnnphonvers), name="words_v")(words_v15)
wordscible = Lambda(lambda x: x[:, -1, :], output_shape=(n_rnnphonvers,), name="wordscible")(words_v15)
rnn_words = GRU(units=n_rnn_phon15, activation="tanh", name="RNN_words")(words_v14)
words_tout = Concatenate(axis=1, name="concat_words")([rnn_words, wordscible])
words_tout = Dense(units=n_dense_particulier, name="dense_words")(words_tout)
words_tout = LeakyReLU(0.2, name="activation_dense_words")(words_tout)
words_tout = Dropout(rate=0.1, name="dropout_words")(words_tout)
words_tout = BatchNormalization(name="batchnorm_words")(words_tout)
words_tout2 = Dense(units=n_dense_particulier2, name="dense_words2")(words_tout)
words_tout2 = LeakyReLU(0.2, name="activation_dense_words2")(words_tout2)
words_tout2 = Dropout(rate=0.1, name="dropout_words2")(words_tout2)
words_tout2 = BatchNormalization(name="batchnorm_words2")(words_tout2)
# rassemblement
tout = Concatenate(axis=1, name="concat_tout")([phonemes_tout2, words_tout2])
dense1 = Dense(units=n_dense1, name="dense_tout1")(tout)
dense1 = LeakyReLU(0.2, name="activation_dense_tout1")(dense1)
dense1 = Dropout(rate=0.1, name="dropout_tout1")(dense1)
dense1 = BatchNormalization(name="batchnorm_tout1")(dense1)
proba = Dense(units=1, activation="sigmoid", name="probability")(dense1)
net = Model(inputs=[phonemes_in, words_in], outputs=proba)
return net
def split_train_dev(df, test_size=0.02, var_id="id", seed=23, forced_id=None):
if forced_id is None:
forced_id = []
id_series = df.loc[:, var_id]
ids = list(set(id_series.to_list()))
ids_train, ids_test = train_test_split(ids, test_size=test_size, random_state=seed)
if len(forced_id) > 0: # rajout des mots dans les donnees de test
for id_to_learn_on in forced_id:
if id_to_learn_on in ids_test:
ids_test.remove(id_to_learn_on)
ids_train.append(id_to_learn_on)
bool_train_series = id_series.apply(lambda x: x in ids_train)
df_train = df.loc[bool_train_series, :]
df_test = df.loc[~bool_train_series, :]
df_train = df_train.reset_index(drop=True)
df_test = df_test.reset_index(drop=True)
return df_train, df_test
def fake_surroundings(len_poem, size_surroundings=5):
"""
Retourne une liste d'indices tirée au sort
:param len_poem: nombre de vers dans le poème
:param size_surroundings: distance du vers de référence du vers (default 5)
:return: liste
"""
# bornes inférieures
lower_bounds_w_neg = np.array([row - size_surroundings for row in range(len_poem)])
lower_bounds_2d = np.stack([np.zeros(len_poem), lower_bounds_w_neg])
# calcul max entre 0 et le rang - surroundings
lower_bounds = np.max(lower_bounds_2d, axis=0)
# bornes supérieures
higher_bounds_w_neg = np.array([row + size_surroundings for row in range(len_poem)])
higher_bounds_2d = np.stack([np.repeat(len_poem, len_poem), higher_bounds_w_neg])
# calcul min entre longueur du poeme et le rang + surroundings
higher_bounds = np.min(higher_bounds_2d, axis=0)
# tirage
fake_within_poem = np.random.randint(low=lower_bounds, high=higher_bounds).tolist()
return fake_within_poem
def vers2phon_vect(vers, lecteur, ft):
"""
Permet d'obtenir les phonèmes et le vecteur associé à un vers que l'on tape
:param vers: string correspondant à un vers
:param lecteur: instance de Lecteur qui permet de lire le vers
:param ft: modèle FastText dans lequel se projète les vecteurs de mots
:return: tuple phonemes, vecteur
"""
if type(vers) is not str:
raise TypeError
phonemes = lecteur.lire_vers(vers, count=False)
if len(vers) > 0:
vect = ft.get_sentence_vector(vers)
norm_vect = np.linalg.norm(vect)
if norm_vect > 0:
vect /= norm_vect
else:
vect = ft.get_sentence_vector("/s")
return phonemes, vect
def pieds(vers):
voyelles = "aE§oO1i5eu@°9y2"
reg = "[{}]".format(voyelles)
voyelles_vers = RegexpTokenizer(reg).tokenize(vers)
nb_pieds = len(voyelles_vers)
return nb_pieds
class Chercheur2Vers:
def __init__(self, t_p, p2idx, dim_words=300, n_antecedant_vers=8, blank="_", net=None, var_id="id",
var_phonemes="phonemes", var_vects="vect", var_vers="vers"):
self.t_p = t_p
self.p2idx = p2idx
self.dim_words = dim_words
self.n_antecedant_vers = n_antecedant_vers
self.blank = blank
self.net = net
self.var_id = var_id
self.var_phonemes = var_phonemes
self.var_vects = var_vects
self.var_vers = var_vers
def count_antecedents_len(self, df):
"""
Fonction retournant un dictionnaire qui associe à chaque entier de 2 à n_antecedant_vers, le nombre
d'observations labélisées par 1 qui contiennent ce nombre d'antécédants non nuls
:param df: DataFrame de type vers
:return: dict
"""
ids = df.loc[:, self.var_id].to_list()
count_ids = Counter(ids)
dico_count = dict()
for n_ant in range(2, self.n_antecedant_vers + 1):
dico_count[n_ant] = len([k for k, v in count_ids.items() if v >= n_ant])
dico_count[self.n_antecedant_vers + 1] = sum([(v - self.n_antecedant_vers) for k, v in count_ids.items()
if v > self.n_antecedant_vers])
return dico_count
def get_index_fake(self, df, n_0_general=1, coef_calage=10, graine=None, shuffle=True):
"""
Retourne une liste d'indices dans laquelle piocher pour créer les éléments labélisés par 0 dans l'apprentissage
:param df: DataFrame de type vers
:param n_0_general: nombre d'élements labelisés par 0 à infliger à chaque élements de longueur
n_antecedant_vers + 1 (default 1)
:param coef_calage: nombre d'élements labelisés par 0 pour les débuts de vers (default 10)
:param graine: graine aléatoire pour le tirage du reste des indices (default None)
:param shuffle: mélanger la liste à la fin (default True)
:return: liste des indices à piocher dans le DataFrame
"""
m = df.shape[0]
dico_count = self.count_antecedents_len(df=df)
nb_labels0 = dico_count[self.n_antecedant_vers + 1] * n_0_general
for k, v in dico_count.items():
if k <= self.n_antecedant_vers:
nb_labels0 += v * n_0_general * coef_calage
repetition_idx_size = nb_labels0 // m
reste_idx_size = nb_labels0 % m
interval = np.arange(m)
if graine is not None:
np.random.seed(graine)
reste_idx = np.random.choice(interval, reste_idx_size, replace=False)
idx = np.concatenate([np.repeat(interval, repetition_idx_size), reste_idx])
if shuffle:
np.random.shuffle(idx)
idx = list(idx.tolist())
return idx
def df2list_idx_train(self, df, n_0_general=1, n_surroundings=1, size_surroundings=6, coef_calage=10,
graine=None, shuffle=True):
"""
Retourne la liste des indices des vers à prendre pour construire les matrices pour l'entraînement.
-1 est placé pour les éléments vides
:param df: DataFrame de type vers
:param n_0_general: nombre d'élements labelisés par 0 à infliger à chaque élements de longueur
n_antecedant_vers + 1 (default 1)
:param n_surroundings: nombre d'éléments à tirer de l'entourage (default 1)
:param size_surroundings: taille de l'entourage (default 6)
:param coef_calage: nombre d'élements labelisés par 0 pour les débuts de vers (default 10)
:param graine: graine aléatoire pour le tirage du reste des indices (default None)
:param shuffle: mélanger la liste à la fin (default True)
:return: liste de listes des indices
"""
fake_ids = self.get_index_fake(df, n_0_general, coef_calage, graine, shuffle)
id_poems_all = list(df.loc[:, self.var_id].to_list())
count_id_poems = Counter(id_poems_all)
id_poems = set([k for k, v in count_id_poems.items() if v >= 2]) # on enleve les poemes d'un seul vers
idx_train = list()
for id_poem in id_poems:
rows_poem = list(np.flatnonzero(df.loc[:, self.var_id] == id_poem).tolist())
len_poem = len(rows_poem)
surroundings_id = list()
for _ in range(n_surroundings):
idx_sur = fake_surroundings(len_poem=len_poem, size_surroundings=size_surroundings)
surroundings_id.extend(idx_sur)
for row in range(1, len_poem):
antecedants = rows_poem[max(0, row - self.n_antecedant_vers):row]
# on rajoute - pour les débuts de vers
idx_train.append([-1] * max(self.n_antecedant_vers - row, 0) + antecedants + [rows_poem[row]])
for i_surrounding in range(n_surroundings):
sur = surroundings_id[row + i_surrounding * len_poem]
idx_train.append([-1] * max(self.n_antecedant_vers - row, 0) + antecedants + [rows_poem[sur]])
for _ in range(n_0_general):
if row < self.n_antecedant_vers:
for _ in range(coef_calage):
fake_idx = fake_ids.pop()
idx_train.append([-1] * (self.n_antecedant_vers - row) + antecedants + [fake_idx])
else:
fake_idx = fake_ids.pop()
idx_train.append(antecedants + [fake_idx])
if shuffle:
np.random.shuffle(idx_train)
return idx_train
def phonemes2one_hot(self, phonemes):
"""
:param phonemes: liste de la forme [vers_precedant_k, ..., vers_precedant_1, vers_cible]
:return: matrice one hot correspondant aux phonèmes de la liste
"""
n_p = len(self.p2idx.keys())
m = len(phonemes)
x_tout = np.zeros((m, self.t_p + 1, n_p))
for i, phoneme in enumerate(phonemes):
phoneme_long = "{blanks}{phoneme}".format(blanks=self.blank * (self.t_p + 1 - len(phoneme)),
phoneme=phoneme)
assert len(phoneme_long) == self.t_p + 1, "phoneme long n'est pas de la meme longueur que la matrix"
for j, p in enumerate(phoneme_long):
x_tout[i, j, self.p2idx[p]] = 1
return x_tout
def labelizer(self, indexes):
"""
Labélise une suite d'indices
:param indexes: liste d'une suite d'indices
:return: label 0 ou 1
"""
if len(indexes) != self.n_antecedant_vers + 1:
raise ValueError("La liste n'est pas de la bonne longueur")
if indexes[self.n_antecedant_vers - 1] + 1 == indexes[self.n_antecedant_vers]:
return 1
else:
return 0
def liste2matrixes(self, liste_idx, df, labeliser=False):
"""
Retourne les matrices nécessaires pour l'entraînement à partir des listes d'indices
:param liste_idx: liste des indices
:param df: Data Frame de type vers
:param labeliser: labélisation des données (default False)
:return: matrice des phonèmes et celle des vecteurs
"""
# pour les vers vides, le word embedding correspond au vecteur de ft.get_word_vector("/s"), ici [0] * dim_words
dict_empty_element = {self.var_id: -1, self.var_phonemes: '', self.var_vects: np.array([0] * self.dim_words)}
df_empty = pd.DataFrame(columns=df.columns)
df_empty = df_empty.append(dict_empty_element, ignore_index=True)
df_copy = df.copy()
df_copy.loc[-1] = df_empty.loc[0]
m = len(liste_idx)
n_p = len(self.p2idx)
mat_phon = np.zeros((m, self.n_antecedant_vers + 1, self.t_p + 1, n_p))
mat_vect = np.zeros((m, self.n_antecedant_vers + 1, self.dim_words))
labels = list()
for i, elements_idx in tqdm(enumerate(liste_idx)):
mat_phon[i, :, :, :] = self.phonemes2one_hot(df_copy.loc[elements_idx, self.var_phonemes])
mat_vect[i, :, :] = np.stack(df_copy.loc[elements_idx, self.var_vects])
if labeliser:
labels.append(self.labelizer(elements_idx))
if labeliser:
labels = np.array(labels)
return mat_phon, mat_vect, labels
else:
return mat_phon, mat_vect
def model(self, n_rnnphonvers=300, n_rnn_phon15=420, n_dense_particulier=50, n_dense_particulier2=30, n_dense1=25):
# phonemes
n_p = len(self.p2idx)
phonemes_in = Input(shape=(self.n_antecedant_vers + 1, self.t_p + 1, n_p), name="phonemes_input")
rnn_phon = GRU(units=n_rnnphonvers, activation="tanh", name="embedding_phonemes")
phonems_v15 = TimeDistributed(rnn_phon, name="RNN_phonemes_vers_unique")(phonemes_in)
phonems_v14 = Lambda(lambda x: x[:, :-1, :], output_shape=(8, n_rnnphonvers), name="phonemes_v")(phonems_v15)
phonems_cible = Lambda(lambda x: x[:, -1, :], output_shape=(n_rnnphonvers,), name="phonemes_cible")(phonems_v15)
rnn_phon_vers = LSTM(units=n_rnn_phon15, activation="tanh", name="RNN_phonemes_total")(phonems_v14)
phonemes_tout = Concatenate(axis=1, name="concat_phonemes")([rnn_phon_vers, phonems_cible])
phonemes_tout = Dense(units=n_dense_particulier, name="dense_phonemes")(phonemes_tout)
phonemes_tout = LeakyReLU(0.2, name="activation_dense_phonemes")(phonemes_tout)
phonemes_tout = Dropout(rate=0.1, name="dropout_phonemes")(phonemes_tout)
phonemes_tout = BatchNormalization(name="batchnorm_phonemes")(phonemes_tout)
phonemes_tout2 = Dense(units=n_dense_particulier2, name="dense_phonemes2")(phonemes_tout)
phonemes_tout2 = LeakyReLU(0.2, name="activation_dense_phonemes2")(phonemes_tout2)
phonemes_tout2 = Dropout(rate=0.1, name="dropout_phonemes2")(phonemes_tout2)
phonemes_tout2 = BatchNormalization(name="batchnorm_phonemes2")(phonemes_tout2)
# word embedding
words_in = Input(shape=(self.n_antecedant_vers + 1, self.dim_words), name="words_input")
emb_reduc = Sequential(name="dim_reduction")
emb_reduc.add(Dense(units=n_rnnphonvers, activation="tanh"))
emb_reduc.add(Lambda(lambda t: K.l2_normalize(1000*t, axis=1)))
emb_reduc.add(Dropout(rate=0.1))
emb_reduc.add(BatchNormalization())
words_v15 = TimeDistributed(emb_reduc)(words_in)
words_v14 = Lambda(lambda x: x[:, :-1, :], output_shape=(8, n_rnnphonvers), name="words_v")(words_v15)
wordscible = Lambda(lambda x: x[:, -1, :], output_shape=(n_rnnphonvers,), name="wordscible")(words_v15)
rnn_words = GRU(units=n_rnn_phon15, activation="tanh", name="RNN_words")(words_v14)
words_tout = Concatenate(axis=1, name="concat_words")([rnn_words, wordscible])
words_tout = Dense(units=n_dense_particulier, name="dense_words")(words_tout)
words_tout = LeakyReLU(0.2, name="activation_dense_words")(words_tout)
words_tout = Dropout(rate=0.1, name="dropout_words")(words_tout)
words_tout = BatchNormalization(name="batchnorm_words")(words_tout)
words_tout2 = Dense(units=n_dense_particulier2, name="dense_words2")(words_tout)
words_tout2 = LeakyReLU(0.2, name="activation_dense_words2")(words_tout2)
words_tout2 = Dropout(rate=0.1, name="dropout_words2")(words_tout2)
words_tout2 = BatchNormalization(name="batchnorm_words2")(words_tout2)
# rassemblement
tout = Concatenate(axis=1, name="concat_tout")((phonemes_tout2, words_tout2))
dense1 = Dense(units=n_dense1, name="dense_tout1")(tout)
dense1 = LeakyReLU(0.2, name="activation_dense_tout1")(dense1)
dense1 = Dropout(rate=0.1, name="dropout_tout1")(dense1)
dense1 = BatchNormalization(name="batchnorm_tout1")(dense1)
proba = Dense(units=1, activation="sigmoid", name="probability")(dense1)
net = Model(inputs=[phonemes_in, words_in], outputs=proba)
net.summary()
return net
def compile_train(self, mat_p, mat_v, labels, opt, epochs=10, batch_size=64):
if self.net is None:
self.net = self.model()
self.net.summary()
self.net.compile(optimizer=opt, loss="binary_crossentropy", metrics=["accuracy"])
self.net.fit([mat_p, mat_v], labels, epochs=epochs, batch_size=batch_size)
return self.net
def epoch_schlag(self, liste_idx, df, opt, split=10, batch_size=64, accelerator=None):
m = len(liste_idx)
width_split = m // split
self.net.compile(optimizer=opt, loss="binary_crossentropy", metrics=["accuracy"])
for i in range(split):
if i < split - 1:
liste_idx_split = liste_idx[(i * width_split):((i + 1) * width_split)]
else:
liste_idx_split = liste_idx[(i * width_split):]
mat_phon, mat_vect, labels = self.liste2matrixes(liste_idx=liste_idx_split, df=df, labeliser=True)
if accelerator is not None:
with accelerator:
self.net.fit([mat_phon, mat_vect], labels, epochs=1, batch_size=batch_size)
else:
self.net.fit([mat_phon, mat_vect], labels, epochs=1, batch_size=batch_size)
del mat_phon, mat_vect, labels
return self.net
def save_net(self, path):
self.net.save(path)
def evaluate(self, df, n_0_general=1, coef_calage=10, n_surroundings=1, size_surroundings=6,
batch_size=128, graine=23):
liste_idx = self.df2list_idx_train(df, n_0_general=n_0_general, coef_calage=coef_calage,
n_surroundings=n_surroundings, size_surroundings=size_surroundings,
graine=graine)
mat_phon, mat_vect, labels = self.liste2matrixes(liste_idx=liste_idx, df=df, labeliser=True)
results = self.net.evaluate([mat_phon, mat_vect], labels, batch_size=batch_size)
return results
def vers2matrixes(self, liste_vers, lecteur, ft, len_output=None):
"""
Transforme une liste de vers en ses matrices correspondantes
:param liste_vers: liste de strings de vers
:param lecteur: instance de Lecteur permettant la lecture des vers
:param ft: modèle FastText dans lequel se projète les vecteurs de mots
:param len_output: dimension 0 de la matrice (default n_antecedant_vers + 1)
:return: tuple (matrice de phonemes, matrice de vecteurs)
"""
if len_output is None:
len_output = self.n_antecedant_vers + 1
len_liste = len(liste_vers)
phonemes = list()
vects = list()
if len_liste > len_output:
raise ValueError
elif len_liste < len_output:
empty_p = ''
empty_v = ft.get_sentence_vector("/s")
n_empty = len_output - len_liste
phonemes = [empty_p] * n_empty
vects = [empty_v] * n_empty
for vers in liste_vers:
phoneme, vect = vers2phon_vect(vers, lecteur, ft)
phonemes.append(phoneme)
vects.append(vect)
mat_phon = self.phonemes2one_hot(phonemes)
mat_vect = np.stack(vects)
return mat_phon, mat_vect
def probas_candidats(self, df, liste_vers=None, lecteur=None, ft=None, mphon_prec=None, mvect_prec=None,
batch_size=128, split=5, accelerator=None):
if (mphon_prec is None) or (mvect_prec is None):
mphon_prec, mvect_prec = self.vers2matrixes(liste_vers, lecteur, ft,
len_output=self.n_antecedant_vers)
m = df.shape[0]
split_width = m // split
pred = None
for i in range(split):
if i < split - 1:
mphon_cibles = self.phonemes2one_hot(df.loc[(i*split_width):((i+1)*split_width - 1), self.var_phonemes])
mvect_cibles = np.stack(df.loc[(i*split_width):((i+1)*split_width - 1), self.var_vects])
else:
mphon_cibles = self.phonemes2one_hot(df.loc[(i * split_width):, self.var_phonemes])
mvect_cibles = np.stack(df.loc[(i * split_width):, self.var_vects])
split_width = df.loc[(i * split_width):, self.var_phonemes].shape[0]
mphon_prec_sized = np.repeat(mphon_prec[np.newaxis, :, :, :], split_width, axis=0)
mvect_prec_sized = np.repeat(mvect_prec[np.newaxis, :, :], split_width, axis=0)
mphon = np.concatenate([mphon_prec_sized, mphon_cibles[:, np.newaxis, :, :]], axis=1)
mvect = np.concatenate([mvect_prec_sized, mvect_cibles[:, np.newaxis, :]], axis=1)
if accelerator is None:
prednouv = self.net.predict([mphon, mvect], batch_size=batch_size)
else:
with accelerator:
prednouv = self.net.predict([mphon, mvect], batch_size=batch_size)
if i == 0:
pred = prednouv
else:
pred = np.concatenate([pred, prednouv])
del mphon_cibles, mvect_cibles, mphon_prec_sized, mvect_prec_sized, mphon, mvect
assert pred.shape[0] == df.shape[0], "Le nombre de prédictions ne correspond pas à la taille du DataFrame"
return pred
def find_best_candidat(self, liste_vers=None, df=None, lecteur=None, ft=None, mphon_prec=None, mvect_prec=None,
batch_size=128, split=5, accelerator=None):
pred = self.probas_candidats(liste_vers=liste_vers, df=df, lecteur=lecteur, ft=ft, mphon_prec=mphon_prec,
mvect_prec=mvect_prec, batch_size=batch_size, split=split, accelerator=accelerator)
candidat = np.argmax(pred)
return df.iloc[candidat, :]
def beam_search_write(self, liste_vers, df, vers_suivants=4, k=3, split=5, batch_size=128, accelerator=None,
**kwargs):
lecteur = kwargs.get("lecteur", None)
ft = kwargs.get("ft", None)
mphon_prec = kwargs.get("mphon_prec", None)
mvect_prec = kwargs.get("mvect_prec", None)
if (mphon_prec is None) or (mvect_prec is None):
mphon_prec, mvect_prec = self.vers2matrixes(liste_vers, lecteur, ft, len_output=self.n_antecedant_vers)
kbest = [(liste_vers, "a", 0.0)]
for n_vers_suivant in range(vers_suivants):
tous_candidats = list()
if n_vers_suivant > 0:
mphon_prec = mphon_prec[1:, :, :]
mvect_prec = mvect_prec[1:, :]
for poem, index_last, score in kbest:
if n_vers_suivant > 0:
phonemes_dernier = df.loc[index_last, self.var_phonemes]
phonemes_oh_dernier = self.phonemes2one_hot([phonemes_dernier])
mphon_prec = np.concatenate([mphon_prec[:(self.n_antecedant_vers - 1), :, :],
phonemes_oh_dernier], axis=0)
vect_dernier = df.loc[index_last, self.var_vects][np.newaxis, :]
mvect_prec = np.concatenate([mvect_prec[:(self.n_antecedant_vers - 1), :],
vect_dernier], axis=0)
probas = self.probas_candidats(df=df, mphon_prec=mphon_prec, mvect_prec=mvect_prec,
batch_size=batch_size, split=split, accelerator=accelerator)
n_candidats = len(probas)
for j in range(n_candidats):
vers_candidat = df.loc[j, self.var_vers]
proba_candidat = probas[j]
candidat = (poem + [vers_candidat], j, score - np.log(proba_candidat))
tous_candidats.append(candidat)
ordered = sorted(tous_candidats, key=lambda scr: scr[2])
kbest = ordered[:k]
if n_vers_suivant == 0:
print("Nouveau vers")
else:
print("{} nouveaux vers".format(n_vers_suivant + 1))
if k >= 3:
print("Harry :")
print("\n".join([vers for vers in kbest[2][0]]))
print("\n")
if k >= 2:
print("Dauphin :")
print("\n".join([vers for vers in kbest[1][0]]))
print("\n")
print("Élu :")
print("\n".join([vers for vers in kbest[0][0]]))
print("\n")
print("\n")
return kbest