-
Notifications
You must be signed in to change notification settings - Fork 0
/
L_Band_wind_emissivity_AQV5_module.f90
596 lines (425 loc) · 19.5 KB
/
L_Band_wind_emissivity_AQV5_module.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
! RSS L-band wind emissivity
! based on Aquarius V5 release
! written by T. Meissner, RSS, September 29, 2018
!
! References:
! 1. Meissner, T.; F. Wentz and D. Le Vine, Aquarius Salinity Retrieval Algorithm Theoretical Basis Document (ATBD),
! End of Mission Version; RSS Technical Report 120117; December 1, 2017;
! Available online at ftp://podaac-ftp.jpl.nasa.gov/allData/aquarius/docs/v5/AQ-014-PS-0017_Aquarius_ATBD-EndOfMission.pdf.
!
! 2. Meissner, T, F. Wentz, and D, Le Vine, 2018,
! The Salinity Retrieval Algorithms for the NASA Aquarius Version 5 and SMAP Version 3 Releases,
! Remote Sensing 10, 1121, doi:10.3390/rs10071121.
!
! 3. Meissner, T. and F. Wentz, The complex dielectric constant of pure and sea water from microwave satellite observations,
! IEEE TGRS, 2004, 42(9), 1836 – 1849, doi:10.1109/TGRS.2004.831888.
!
! 4. Meissner, T. and F. Wentz, The emissivity of the ocean surface between 6 and 90 GHz
! over a large range of wind speeds and Earth incidence angles,
! IEEE TGRS, 2012, 50(8), 3004 – 3026, doi: 10.1109/TGRS.2011.2179662.
!
! 5. Meissner, T., F. Wentz, F. and L. Ricciardulli, The emission and scattering of L-band microwave radiation
! from rough ocean surfaces and wind speed measurements from Aquarius,
! J. Geophys. Res. Oceans, 2014, 119, doi:10.1002/2014JC009837.
!
module L_Band_wind_emissivity_AQV5_module
implicit none
private
save
integer(4), parameter :: n_rad=3
real(4), parameter :: sst_ref0=20.0, sss_ref0=35.0, freq_aq=1.413, wcasp=11.0, wextrapol=17.0, teff=290.
real(4), parameter, dimension(n_rad) :: tht_ref = (/29.36, 38.44, 46.29/)
real(4), parameter :: kappascale=1.4 ! empirical scale factor for delta form factor
! input tables
character(len=200), parameter :: emiss_coeff_harm_file = &
'\\Thomas\C\AQUARIUS\surface_roughness\tables\V_may_2013\coeffs\deW_harm_coeffs_V9A_MI.dat'
character(len=200), parameter :: delta_file = '\\Thomas\C\AQUARIUS\V5.0\DTB_SST_WSPD\TABLES\delta_EW_V5_B.dat'
integer(4), parameter :: iu=3
public :: find_demiss_rough_LBAND
contains
subroutine find_demiss_rough_LBAND (wspd, sst, tht, demiss_rough)
! roughness correction
! Aquarius V5.0
! interpolate/extrapolate EIA
implicit none
real(4), intent(in) :: wspd ! [m/s]
real(4), intent(in) :: sst ! SST [Celsius]
real(4), intent(in) :: tht ! Earth Incidence Angle [deg]
real(4), intent(out), dimension(2) :: demiss_rough
! isotropic part of wind induced surface emissivity [*290K]
real(4), dimension(2) :: dew_0, dew_1
integer(4) :: irad_0,irad_1
real(4) :: brief
real(4), dimension(2) :: yy
real(4), dimension(0:n_rad) :: thtfix
thtfix(1:3) = tht_ref(1:3)
thtfix(0) = 0.0
if (tht<tht_ref(1)) then
irad_0 = 0
irad_1 = 1
call find_demiss_rough_wspd_AQV5 (1, wspd, sst, dew_1)
dew_0(1) = (dew_1(1)+dew_1(2))/2.0 ! (V+H)/2 at nadir
dew_0(2) = (dew_1(1)+dew_1(2))/2.0 ! (V+H)/2 at nadir
else if (tht>=tht_ref(1) .and. tht<tht_ref(2)) then
irad_0 = 1
irad_1 = 2
call find_demiss_rough_wspd_AQV5 (1, wspd, sst, dew_0)
call find_demiss_rough_wspd_AQV5 (2, wspd, sst, dew_1)
else
irad_0 = 2
irad_1 = 3
call find_demiss_rough_wspd_AQV5 (2, wspd, sst, dew_0)
call find_demiss_rough_wspd_AQV5 (3, wspd, sst, dew_1)
endif
brief = (tht-thtfix(irad_0))/(thtfix(irad_1)-thtfix(irad_0))
! linear interpolation/extrapolation to/form Aquarius EIA
yy = dew_0*(1.0-brief) + dew_1*brief
demiss_rough = yy
return
end subroutine find_demiss_rough_LBAND
! Aquarius V5.0
subroutine fd_TM_emiss_harmonics(irad,wspd, aharm, daharm)
implicit none
integer(4), intent(in) :: irad
real(4), intent(in) :: wspd
real(4), dimension(0:2,2), intent(out) :: aharm(0:2,2) !1=V, 2=H
real(4), dimension(0:2,2), intent(out), optional :: daharm(0:2,2) !1=V, 2=H
integer(4), parameter :: n_rad=3, npoly=5
real(4), dimension(2) :: A0, A1, A2 !1=V, 2=H
real(4), dimension(2) :: dA0, dA1, dA2 !1=V, 2=H
real(4) :: ww
integer(4) :: ipol, iharm
real(4) :: fval, dval
real(4) :: w0, w1, w2 ! linear extrapolation/cutoff points
integer(4), save :: istart=1
real(8), dimension(0:2,2,n_rad,npoly), save :: acoef ! harmonic coefficients for radiometer wind direction signal
real(8), dimension(0:2,2,n_rad), save :: wspd_max_a ! high wind speed for radiometer wind speed signal
if (istart==1) then
istart=0
open(unit=3,file=emiss_coeff_harm_file, form='binary', action='read', status='old')
read(3) acoef
read(3) wspd_max_a
! overwrite
wspd_max_a = wextrapol
close(3)
endif
A0=0.0
A1=0.0
A2=0.0
do ipol=1,2
! A0
iharm=0
w0 = wspd_max_a(iharm,ipol,irad)
ww = wspd
if (wspd >= w0) ww=w0 ! extrapolation at w0
fval = &
ww*acoef(iharm,ipol,irad,1) + (ww**2)*acoef(iharm,ipol,irad,2) + (ww**3)*acoef(iharm,ipol,irad,3) + (ww**4)*acoef(iharm,ipol,irad,4) + (ww**5)*acoef(iharm,ipol,irad,5)
dval = &
acoef(iharm,ipol,irad,1) + (2.0*ww)*acoef(iharm,ipol,irad,2) + (3.0*(ww**2))*acoef(iharm,ipol,irad,3) + (4.0*(ww**3))*acoef(iharm,ipol,irad,4) + (5.0*(ww**4))*acoef(iharm,ipol,irad,5)
if (wspd<=w0) then
A0(ipol) = fval
else
A0(ipol) = fval + dval*(wspd-w0)
endif
dA0(ipol) = dval
! A1
iharm=1
w1 = wspd_max_a(iharm,ipol,irad)
ww = wspd
if (wspd >= w1) ww=w1 ! cutoff at w1
fval = ww*acoef(iharm,ipol,irad,1) + (ww**2) *acoef(iharm,ipol,irad,2) + (ww**3)*acoef(iharm,ipol,irad,3) + (ww**4)*acoef(iharm,ipol,irad,4) + (ww**5)*acoef(iharm,ipol,irad,5)
dval = acoef(iharm,ipol,irad,1) + (2.0*ww)*acoef(iharm,ipol,irad,2) + (3.0*(ww**2))*acoef(iharm,ipol,irad,3) + (4.0*(ww**3))*acoef(iharm,ipol,irad,4) + (5.0*(ww**4))*acoef(iharm,ipol,irad,5)
A1(ipol) = fval
dA1(ipol) = dval
! A2
iharm=2
w2 = wspd_max_a(iharm,ipol,irad)
ww = wspd
if (wspd >= w2) ww=w2 ! cutoff at w2
fval = ww*acoef(iharm,ipol,irad,1) + (ww**2) *acoef(iharm,ipol,irad,2) + (ww**3)*acoef(iharm,ipol,irad,3) + (ww**4)*acoef(iharm,ipol,irad,4) + (ww**5)*acoef(iharm,ipol,irad,5)
dval = acoef(iharm,ipol,irad,1) + (2.0*ww) *acoef(iharm,ipol,irad,2) + (3.0*(ww**2))*acoef(iharm,ipol,irad,3) + (4.0*(ww**3))*acoef(iharm,ipol,irad,4) + (5.0*(ww**4))*acoef(iharm,ipol,irad,5)
A2(ipol) = fval
dA2(ipol) = dval
enddo !ipol
do ipol=1,2
aharm(0,ipol) = A0(ipol)
aharm(1,ipol) = A1(ipol)
aharm(2,ipol) = A2(ipol)
enddo
if (present(daharm)) then
do ipol=1,2
daharm(0,ipol) = dA0(ipol)
daharm(1,ipol) = dA1(ipol)
daharm(2,ipol) = dA2(ipol)
enddo
endif
return
end subroutine fd_TM_emiss_harmonics
subroutine find_demiss_rough_AQV5 (irad, wspd, phir, sst, demiss_rough)
! full roughness correction
implicit none
integer(4), intent(in) :: irad
real(4), intent(in) :: wspd ! [m/s]
real(4), intent(in) :: phir ! [deg] relative wind direction
real(4), intent(in) :: sst ! Celsius
real(4), intent(out), dimension(2) :: demiss_rough ! [*290K]
real(4) :: xsst, xwspd, xtht
real(4), dimension(2) :: dew_1, dew_2, xem0, yem0
real(4), dimension(0:2,2) :: aharm !1=V, 2=H
real(4), dimension(0:2,2) :: daharm !1=V, 2=H
real(4), dimension(2) :: delta
integer(4) :: ipol
integer(4) :: ksst1, ksst2
real(4) :: x1, x2, brief, y1, y2
integer(4), parameter :: msst=35, n_rad=3
integer(4), save :: istart=1
real(4), dimension(2,msst,n_rad), save :: dtab
real(4), parameter :: sst_step=1.0, sst0=0.0, sstmax=30.0, wmax=wcasp
if (istart==1) then
istart=0
open(unit=3,form='binary',file=delta_file,action='read',status='old')
read(3) dtab
close(3)
endif
call fd_TM_emiss_harmonics(irad,wspd, aharm, daharm)
if (phir > -900.) then
dew_1(1:2) = aharm(0,1:2) + aharm(1,1:2)*cosd(phir) + aharm(2,1:2)*cosd(2.0*phir) ! *290K
else
dew_1(1:2) = aharm(0,1:2)
endif
xtht=tht_ref(irad)
call fdem0_meissner_wentz(freq_aq,xtht,sst, sss_ref0, xem0)
call fdem0_meissner_wentz(freq_aq,xtht,sst_ref0,sss_ref0, yem0)
! sst adjustment
xsst=sst
if (xsst<sst0+sst_step/2) xsst=sst0+sst_step/2
if (xsst>sstmax) xsst=sstmax
xwspd=wspd
if (xwspd<0.0) xwspd=0.0
if (xwspd>wmax) xwspd=wmax
call fd_TM_emiss_harmonics(irad,xwspd, aharm, daharm)
if (phir > -900.) then
dew_2(1:2) = aharm(0,1:2) + aharm(1,1:2)*cosd(phir) + aharm(2,1:2)*cosd(2.0*phir) ! *290K
else
dew_2(1:2) = aharm(0,1:2)
endif
! *290K dew_2 = dew_1 below wmax. above wmax it is kept constant
ksst1 = floor((xsst - (sst0+sst_step/2))/sst_step) + 1
if (ksst1< 1) ksst1 = 1
if (ksst1> msst-1) ksst1 = msst-1
ksst2 = ksst1 + 1
do ipol=1,2
x1 = sst0 + (ksst1-1)*sst_step + sst_step/2
x2 = x1 + sst_step
brief = (xsst-x1)/sst_step
y1 = dtab(ipol,ksst1,irad)
y2 = dtab(ipol,ksst2,irad)
delta(ipol) = y1*(1.0-brief) + y2*brief
enddo ! ipol
! total roughness correction
do ipol=1,2
demiss_rough(ipol) = dew_1(ipol)*(xem0(ipol)/yem0(ipol)) + kappascale*delta(ipol)*dew_2(ipol)
enddo
return
end subroutine find_demiss_rough_AQV5
subroutine find_demiss_rough_wspd_AQV5 (irad, wspd, sst, demiss_rough)
! isotropic part of roughness correction
implicit none
integer(4), intent(in) :: irad
real(4), intent(in) :: wspd ! [m/s]
real(4), intent(in) :: sst ! Celsius
real(4), intent(out), dimension(2) :: demiss_rough ! [*290K]
real(4) :: xsst, xwspd, xtht
real(4), dimension(2) :: dew_1, dew_2, xem0, yem0
real(4), dimension(0:2,2) :: aharm !1=V, 2=H
real(4), dimension(0:2,2) :: daharm !1=V, 2=H
real(4), dimension(2) :: delta
integer(4) :: ipol
integer(4) :: ksst1, ksst2
real(4) :: x1, x2, brief, y1, y2
integer(4), parameter :: msst=35, n_rad=3
integer(4), save :: istart=1
real(4), dimension(2,msst,n_rad), save :: dtab
real(4), parameter :: sst_step=1.0, sst0=0.0, sstmax=30.0, wmax=wcasp
if (istart==1) then
istart=0
open(unit=3,form='binary',file=delta_file,action='read',status='old')
read(3) dtab
close(3)
endif
call fd_TM_emiss_harmonics(irad,wspd, aharm, daharm)
dew_1(1:2) = aharm(0,1:2) ! *290K
xtht=tht_ref(irad)
call fdem0_meissner_wentz(freq_aq,xtht,sst, sss_ref0, xem0)
call fdem0_meissner_wentz(freq_aq,xtht,sst_ref0,sss_ref0, yem0)
! sst adjustment
xsst=sst
if (xsst<sst0+sst_step/2) xsst=sst0+sst_step/2
if (xsst>sstmax) xsst=sstmax
xwspd=wspd
if (xwspd<0.0) xwspd=0.0
if (xwspd>wmax) xwspd=wmax
call fd_TM_emiss_harmonics(irad,xwspd, aharm, daharm)
dew_2(1:2) = aharm(0,1:2) ! *290K
! *290K dew_2 = dew_1 below wmax. above wmax it is kept constant
ksst1 = floor((xsst - (sst0+sst_step/2))/sst_step) + 1
if (ksst1< 1) ksst1 = 1
if (ksst1> msst-1) ksst1 = msst-1
ksst2 = ksst1 + 1
do ipol=1,2
x1 = sst0 + (ksst1-1)*sst_step + sst_step/2
x2 = x1 + sst_step
brief = (xsst-x1)/sst_step
y1 = dtab(ipol,ksst1,irad)
y2 = dtab(ipol,ksst2,irad)
delta(ipol) = y1*(1.0-brief) + y2*brief
enddo ! ipol
! total roughness correction
do ipol=1,2
demiss_rough(ipol) = dew_1(ipol)*(xem0(ipol)/yem0(ipol)) + kappascale*delta(ipol)*dew_2(ipol)
enddo
return
end subroutine find_demiss_rough_wspd_AQV5
subroutine fdem0_meissner_wentz(freq,tht,sst,salinity, em0)
! input:
! name parameter unit range
!
! freq frequency [GHz] >0
! tht EIA [deg] [0, 90[
! sst SST [C] -25 c to 40 c for pure water
! -2 c to 34 c for saline water
! salinity salinity [ppt] 0 to 40
!
! output:
! EM0 specular emissivity [0,1]
! 2-dimesnional vector, 1=v-pol, 2=h-pol
implicit none
real(4), intent(in) :: freq,tht,sst,salinity
real(4), dimension(2), intent(out) :: em0
real(4), parameter :: f0=17.97510
real(4) :: costht,sinsqtht
real(4) :: e0s,e1s,e2s,n1s,n2s,sig
complex(4) :: permit,esqrt,rh,rv
complex(4), parameter :: j=(0.,1.)
call dielectric_meissner_wentz(sst,salinity, e0s,e1s,e2s,n1s,n2s,sig)
costht=cosd(tht)
sinsqtht=1.-costht*costht
! debye law (2 relaxation wavelengths)
permit = (e0s - e1s)/(1.0 - j*(freq/n1s)) + (e1s - e2s)/(1.0 - j*(freq/n2s)) + e2s + j*sig*f0/freq
permit = conjg(permit)
esqrt=csqrt(permit-sinsqtht)
rh=(costht-esqrt)/(costht+esqrt)
rv=(permit*costht-esqrt)/(permit*costht+esqrt)
em0(1) =1.-rv*conjg(rv)
em0(2) =1.-rh*conjg(rh)
return
end subroutine fdem0_meissner_wentz
subroutine fdpermit_meissner_wentz(freq,sst,salinity, permit)
! input:
! name parameter unit range
!
! freq frequency [GHz] >0
! tht EIA [deg] [0, 90[
! sst SST [C] -25 c to 40 c for pure water
! -2 c to 34 c for saline water
! salinity salinity [ppt] 0 to 40
!
! output:
! permit permittivity
! (negative imaginary part to be consistent with wentz1 convention)
implicit none
real(4), intent(in) :: freq,sst,salinity
complex(4), intent(out) :: permit
real(4), parameter :: f0=17.97510
real(4) :: e0s,e1s,e2s,n1s,n2s,sig
complex(4), parameter :: j=(0.,1.)
call dielectric_meissner_wentz(sst,salinity, e0s,e1s,e2s,n1s,n2s,sig)
! debye law (2 relaxation wavelengths)
permit = (e0s - e1s)/(1.0 - j*(freq/n1s)) + (e1s - e2s)/(1.0 - j*(freq/n2s)) + e2s + j*sig*f0/freq
permit = conjg(permit)
return
end subroutine fdpermit_meissner_wentz
subroutine dielectric_meissner_wentz(sst_in,s, e0s,e1s,e2s,n1s,n2s,sig)
!
! complex dielectric constant: eps
! [MW 2004, MW 2012].
! References:
! [MW 2004]: T. Meissner and F. J. Wentz,
! "The complex dielectric constant of pure and sea water from microwave satellite observations,"
! IEEE Trans. Geosci. Remote Sens., vol. 42, no.9, pp 1836 – 1849, 2004.
!
! [MW 2012]: T. Meissner and F. J. Wentz,
! "The Emissivity of the Ocean Surface between 6 – 90 GHz over a Large Range of Wind Speeds and Earth Incidence Angles,"
! IEEE Trans. Geosci. Remote Sens., vol. 50, no.8, pp 3004 - 3026, 2012.
!
! Changes from [MW 2012]:
! 1. Typo (sign) in the printed version of coefficient d3 in Table 7. Its value should be -0.35594E-06.
! 2. Changed SST behavior of coefficient b2 from:
! b2 = 1.0 + s*(z(10) + z(11)*sst) to
! b2 = 1.0 + s*(z(10) + 0.5*z(11)*(sst + 30))
!
!!
! input:
! name parameter unit range
! sst sst [c] -25 c to 40 c for pure water
! -2 c to 34 c for saline water
! s salinity [ppt] 0 to 40
!
! output:
! Debye pparameters: e0s,e1s,e2s,n1s,n2s,sig
! The permittivity can be calculated in the subroutine: fdpermit_meissner_wentz
implicit none
real(4), intent(in) :: sst_in,s
real(4), intent(out) :: e0s,e1s,e2s,n1s,n2s,sig
real(4), dimension(11), parameter :: &
x=(/ 5.7230e+00, 2.2379e-02, -7.1237e-04, 5.0478e+00, -7.0315e-02, 6.0059e-04, 3.6143e+00, &
2.8841e-02, 1.3652e-01, 1.4825e-03, 2.4166e-04 /)
real(4), dimension(13), parameter :: &
z=(/ -3.56417e-03, 4.74868e-06, 1.15574e-05, 2.39357e-03, -3.13530e-05, &
2.52477e-07, -6.28908e-03, 1.76032e-04, -9.22144e-05, -1.99723e-02, &
1.81176e-04, -2.04265e-03, 1.57883e-04 /) ! 2004
real(4), dimension(3), parameter :: a0coef=(/ -0.33330E-02, 4.74868e-06, 0.0e+00/)
real(4), dimension(5), parameter :: b1coef=(/0.23232E-02, -0.79208E-04, 0.36764E-05, -0.35594E-06, 0.89795E-08/)
real(4) :: e0,e1,e2,n1,n2
real(4) :: a0,a1,a2,b1,b2
real(4) :: sig35,r15,rtr15,alpha0,alpha1
real(4) :: sst,sst2,sst3,sst4,s2
sst=sst_in
if(sst.lt.-30.16) sst=-30.16 !protects against n1 and n2 going zero for very cold water
sst2=sst*sst
sst3=sst2*sst
sst4=sst3*sst
s2=s*s
! pure water
e0 = (3.70886e4 - 8.2168e1*sst)/(4.21854e2 + sst) ! stogryn et al.
e1 = x(1) + x(2)*sst + x(3)*sst2
n1 = (45.00 + sst)/(x(4) + x(5)*sst + x(6)*sst2)
e2 = x(7) + x(8)*sst
n2 = (45.00 + sst)/(x(9) + x(10)*sst + x(11)*sst2)
! saline water
! conductivity [s/m] taken from stogryn et al.
sig35 = 2.903602 + 8.60700e-2*sst + 4.738817e-4*sst2 - 2.9910e-6*sst3 + 4.3047e-9*sst4
r15 = s*(37.5109+5.45216*s+1.4409e-2*s2)/(1004.75+182.283*s+s2)
alpha0 = (6.9431+3.2841*s-9.9486e-2*s2)/(84.850+69.024*s+s2)
alpha1 = 49.843 - 0.2276*s + 0.198e-2*s2
rtr15 = 1.0 + (sst-15.0)*alpha0/(alpha1+sst)
sig = sig35*r15*rtr15
! permittivity
a0 = exp(a0coef(1)*s + a0coef(2)*s2 + a0coef(3)*s*sst)
e0s = a0*e0
if(sst.le.30) then
b1 = 1.0 + s*(b1coef(1) + b1coef(2)*sst + b1coef(3)*sst2 + b1coef(4)*sst3 + b1coef(5)*sst4)
else
b1 = 1.0 + s*(9.1873715e-04 + 1.5012396e-04*(sst-30))
endif
n1s = n1*b1
a1 = exp(z(7)*s + z(8)*s2 + z(9)*s*sst)
e1s = e1*a1
! b2 = 1.0 + s*(z(10) + z(11)*sst)
b2 = 1.0 + s*(z(10) + 0.5*z(11)*(sst + 30))
n2s = n2*b2
a2 = 1.0 + s*(z(12) + z(13)*sst)
e2s = e2*a2
return
end subroutine dielectric_meissner_wentz
end module L_Band_wind_emissivity_AQV5_module