ucm is a collection of cmake macros that help with:
- managing compiler/linker flags
- collecting source files with grouping in IDEs that mimics the filesystem structure
- easy removing source files from already collected ones
- adding a precompiled header for targets
- unity builds of targets
- others... contribution is welcome!
Tested with MSVC/GCC/Clang.
cotire is an optional submodule for the ucm_add_target() macro either do git submodule update --init
after cloning or include cotire in your cmake files before ucm.
- ucm_print_flags
- ucm_add_flags
- ucm_set_flags
- ucm_add_linker_flags
- ucm_set_linker_flags
- ucm_set_runtime
- ucm_set_xcode_attrib
- ucm_add_files
- ucm_add_dirs
- ucm_count_sources
- ucm_include_file_in_sources
- ucm_dir_list
- ucm_remove_files
- ucm_remove_directories
- ucm_add_target
Macro notation: myMacro(NAME <name> [FLAG])
- NAME
and a name after it are required and FLAG is optional (because in brackets).
Prints all relevant flags - for example with -DCMAKE_BUILD_TYPE=Debug
given to cmake for makefiles:
CMAKE_C_FLAGS_DEBUG: -g
CMAKE_CXX_FLAGS_DEBUG: -g
CMAKE_C_FLAGS: --save-temps -std=c++98 -pedantic -m64 -O2 -fvisibility=hidden
CMAKE_CXX_FLAGS: --save-temps -std=c++98 -pedantic -m64 -O2 -fvisibility=hidden
or for a multi config generator like Visual Studio:
CMAKE_C_FLAGS_DEBUG: /D_DEBUG /MDd /Zi /Ob0 /Od /RTC1
CMAKE_CXX_FLAGS_DEBUG: /D_DEBUG /MDd /Zi /Ob0 /Od /RTC1
CMAKE_C_FLAGS_RELEASE: /MD /O2 /Ob2 /D NDEBUG
CMAKE_CXX_FLAGS_RELEASE: /MD /O2 /Ob2 /D NDEBUG
CMAKE_C_FLAGS: /DWIN32 /D_WINDOWS /W3 /W4
CMAKE_CXX_FLAGS: /DWIN32 /D_WINDOWS /W3 /GR /EHsc /W4
Append the flags to a different set depending on it's options - examples:
ucm_add_flags(-O3 -Wextra) # will add to CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
ucm_add_flags(C -O3) # will add to CMAKE_C_FLAGS
ucm_add_flags(CXX -O3) # will add to CMAKE_CXX_FLAGS
ucm_add_flags(-O3 -Wall CONFIG Debug) # will add to CMAKE_C_FLAGS_DEBUG and CMAKE_CXX_FLAGS_DEBUG
ucm_add_flags(C -Wall CONFIG Debug Release) # will add to CMAKE_C_FLAGS_DEBUG and CMAKE_C_FLAGS_RELEASE
Removes the old and sets the new flags to a different set depending on it's options - examples:
ucm_set_flags(CXX) # will clear CMAKE_CXX_FLAGS
ucm_set_flags() # will clear both CMAKE_C_FLAGS and CMAKE_CXX_FLAGS
ucm_set_flags(CXX -O3) # will set CMAKE_CXX_FLAGS
ucm_set_flags(-O3 -Wall CONFIG Debug) # will set CMAKE_C_FLAGS_DEBUG and CMAKE_CXX_FLAGS_DEBUG
Append the flags to a different set depending on it's options - examples:
ucm_add_linker_flags(/NXCOMPAT) # will add to CMAKE_<TYPE>_LINKER_FLAGS (TYPE is all 4 - exe/module/shared/static)
ucm_add_linker_flags(EXE /DYNAMICBASE CONFIG Release) # will add to CMAKE_EXE_LINKER_FLAGS_RELEASE only
ucm_add_flags(EXE /DYNAMICBASE CONFIG Debug Release) # will add to CMAKE_EXE_LINKER_FLAGS_DEBUG and CMAKE_EXE_LINKER_FLAGS_RELEASE
Removes the old and sets the new flags to a different set depending on it's options - examples:
ucm_set_linker_flags(/NXCOMPAT) # will clear all CMAKE_<TYPE>_LINKER_FLAGS
ucm_set_linker_flags(EXE /DYNAMICBASE CONFIG Release) # will set CMAKE_EXE_LINKER_FLAGS_RELEASE only
Sets the runtime to static/dynamic - for example with Visual Studio as a generator:
ucm_print_flags()
ucm_set_runtime(STATIC)
ucm_print_flags()
will result in:
CMAKE_C_FLAGS_DEBUG: /D_DEBUG /MDd /Zi /Ob0 /Od /RTC1
CMAKE_CXX_FLAGS_DEBUG: /D_DEBUG /MDd /Zi /Ob0 /Od /RTC1
CMAKE_C_FLAGS_RELEASE: /MD /O2 /Ob2 /D NDEBUG
CMAKE_CXX_FLAGS_RELEASE: /MD /O2 /Ob2 /D NDEBUG
CMAKE_C_FLAGS: /DWIN32 /D_WINDOWS /W3 /W4
CMAKE_CXX_FLAGS: /DWIN32 /D_WINDOWS /W3 /GR /EHsc /W4
CMAKE_C_FLAGS_DEBUG: /D_DEBUG /MTd /Zi /Ob0 /Od /RTC1
CMAKE_CXX_FLAGS_DEBUG: /D_DEBUG /MTd /Zi /Ob0 /Od /RTC1
CMAKE_C_FLAGS_RELEASE: /MT /O2 /Ob2 /D NDEBUG
CMAKE_CXX_FLAGS_RELEASE: /MT /O2 /Ob2 /D NDEBUG
CMAKE_C_FLAGS: /DWIN32 /D_WINDOWS /W3 /W4
CMAKE_CXX_FLAGS: /DWIN32 /D_WINDOWS /W3 /GR /EHsc /W4
Sets an Xcode attribute and optionally per-configuration:
ucm_set_xcode_attrib(DEBUG_INFORMATION_FORMAT "dwarf-with-dsym")
ucm_set_xcode_attrib(DEAD_CODE_STRIPPING "YES" CONFIG Debug Release)
will result in:
CMAKE_XCODE_ATTRIBUTE_DEBUG_INFORMATION_FORMAT: "dwarf-with-dsym"
CMAKE_XCODE_ATTRIBUTE_DEAD_CODE_STRIPPING[variant=Debug]: "YES"
CMAKE_XCODE_ATTRIBUTE_DEAD_CODE_STRIPPING[variant=Release]: "YES"
Adds the sources to the sources variable and sets up filters for the solution explorer of Visual Studio (probably for XCode/CodeBlocks too).
The filters will mimic the filesystem - if we have given dir1/test/a.cpp
we would have by default dir1/test
as nested filters in the solution explorer. This can be controlled with FILTER_POP
- 1 would result in only test
as a filter and 2 would result in no filter for a.cpp
- see ucm_add_dirs for a visual example.
ucm_add_files("dir/some1.cpp" "dir/some1.h" TO sources)
macro ucm_add_dirs(dir1 dir2 dir3... TO <sources> [RECURSIVE] [FILTER_POP <num>] [ADDITIONAL_EXT ext1 ext2 ...])
Adds all sources (sources and headers with all valid c/c++ extensions) from the directories given.
Can be recursive with the RECURSIVE
flag.
Like ucm_add_files()
filters for the solution explorer of IDEs can be controlled with FILTER_POP
- example:
CMake code | result |
---|---|
ucm_add_dirs(util TO sources) |
|
ucm_add_dirs(util TO sources FILTER_POP 1) |
Additional extensions for collection can be added with the ADDITIONAL_EXT
list.
Given a list of sources - returns the number of source files (no headers - only valid source extensions) in the result.
set(sources "a.cpp;b.cpp;h.hpp")
ucm_count_sources(${sources} c.cpp d.cpp RESULT res) # would return 4 in res
Includes the header in the source file with a compile flag (without modifying the file) either with -include "hdr.h"
or with /FI"hdr.h"
depending on the compiler.
ucm_include_file_in_sources(c.cc a.cc b.cc HEADER "common.h")
Returns a list of subdirectories for a given directory.
ucm_dir_list("the/dir" result)
Removes the given source files from the sources list - example:
ucm_add_dirs(utils REC TO sources)
ucm_remove_files(utils/deprecated.h FROM sources)
Removes all source files from the given directories from the sources list (recursively) - example:
ucm_add_dirs(utils REC TO sources)
# and then remove only the ones we don't want
ucm_remove_directories(utils/deprecated utils/experimental FROM sources)
Patterns can also be given like this:
ucm_remove_directories(utils FROM sources MATCHES win32)
macro ucm_add_target(NAME <name> TYPE <EXECUTABLE|STATIC|SHARED|MODULE> SOURCES src1 src2 src3... [PCH_FILE <pch>] [UNITY [CPP_PER_UNITY <num>] [UNITY_EXCLUDED excl_src1 excl_src2 ...]])
A wrapper of add_library()
and add_executable()
calls. Uses cotire for platform/compiler independent usage of precompiled headers and/or making a unity build of the target.
For information about unity builds in general go to the bottom.
ucm_add_target(NAME example TYPE EXECUTABLE SOURCES "${sources}" PCH_FILE precompiled.h)
The example above shows how to add a target with a precompiled header.
ucm_add_target(NAME example TYPE EXECUTABLE SOURCES "${sources}" UNITY CPP_PER_UNITY 20 UNITY_EXCLUDED "separate/some2.cpp")
When the UCM_UNITY_BUILD
ucm option is set to ON
(OFF
by default) a target registered like in the example above will actually result in 2 targets added - the unity target with example
as a name (included in the build by default) and the original target with example_ORIGINAL
as a name (excluded from the build by default). This allows the user to browse and modify the sources in the original target properly within the IDE. Also separate/some2.cpp
will be built normally and will not be included in the unity sources.
When new sources are added to the original target the unity target will be updated accordingly by cotire.
The order in which sources are given to SOURCES
is the order in which they will appear in the unity files so you can combat compilation issues by changing the order of the source files.
Targets can be excluded from unity builds by adding them in the UCM_UNITY_BUILD_EXCLUDE_TARGETS
list when invoking cmake (handy if a target becomes problematic in a unity build or if you want to iterate fast on a particular target and want to compile it's sources separately).
Mixed language targets (C/C++) are handled properly - separate unity files are generated for the different languages.
The macro will self-diagnose the target and if it has more than 1 source file and has not been registered with the UNITY flag a developer warning will be printed that the target may benefit from a unity build.
CPP_PER_UNITY - to explicitly say how many source files should go into a unity source (default is 100). Another option is to pass not a number but -jX
after CPP_PER_UNITY
and that would mean dividing the sources into X unity sources.
UNITY_EXCLUDED - list of files from the target that should be excluded from unify-ing (will be used normally by themselves - can be used to fix compilation errors).
Unity examples - given 100 .cpp files in the target:
CPP_PER_UNITY 5
would mean 20 .cxx unity files including 5 of the original .cpp files eachCPP_PER_UNITY 10
would mean 10 .cxx unity files including 10 of the original .cpp files eachCPP_PER_UNITY -j8
would mean 8 .cxx unity files dividing the original 100 among them
How a unity target looks in the IDE:
For all the pros and cons checkout my blog post.