forked from shibing624/pycorrector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluate_models.py
97 lines (89 loc) · 5.11 KB
/
evaluate_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description:
"""
import argparse
import os
import sys
sys.path.append("..")
import pycorrector
from pycorrector.utils import eval
pwd_path = os.path.abspath(os.path.dirname(__file__))
def main(args):
if args.data == 'sighan_15' and args.model == 'rule':
# Sentence Level: acc:0.5100, precision:0.5139, recall:0.1363, f1:0.2154, cost time:1464.87 s
eval.eval_sighan2015_by_model(pycorrector.correct)
if args.data == 'sighan_15' and args.model == 'bert':
# right_rate:0.37623762376237624, right_count:38, total_count:101;
# recall_rate:0.3645833333333333, recall_right_count:35, recall_total_count:96, spend_time:503 s
from pycorrector.bert.bert_corrector import BertCorrector
model = BertCorrector()
eval.eval_sighan2015_by_model(model.bert_correct)
if args.data == 'sighan_15' and args.model == 'macbert':
from pycorrector.macbert.macbert_corrector import MacBertCorrector
model = MacBertCorrector()
eval.eval_sighan2015_by_model_batch(model.batch_macbert_correct)
# macbert-base: Sentence Level: acc:0.7900, precision:0.8250, recall:0.7293, f1:0.7742, cost time:4.90 s
# pert-base: Sentence Level: acc:0.7709, precision:0.7893, recall:0.7311, f1:0.7591, cost time:2.52 s, total num: 1100
# pert-large: Sentence Level: acc:0.7709, precision:0.7847, recall:0.7385, f1:0.7609, cost time:7.22 s, total num: 1100
if args.data == 'sighan_15' and args.model == 'ernie':
# right_rate:0.297029702970297, right_count:30, total_count:101;
# recall_rate:0.28125, recall_right_count:27, recall_total_count:96, spend_time:655 s
from pycorrector.ernie.ernie_corrector import ErnieCorrector
model = ErnieCorrector()
eval.eval_sighan2015_by_model(model.ernie_correct)
if args.data == 'sighan_15' and args.model == 't5':
from pycorrector.t5.t5_corrector import T5Corrector
model = T5Corrector()
eval.eval_sighan2015_by_model_batch(model.batch_t5_correct)
# Sentence Level: acc:0.7582, precision:0.8321, recall:0.6390, f1:0.7229, cost time:5.12 s
if args.data == 'sighan_15' and args.model == 'copyt5':
from pycorrector.t5.copyt5_corrector import CopyT5Corrector
model = CopyT5Corrector()
eval.eval_sighan2015_by_model_batch(model.batch_t5_correct)
# Sentence Level: acc:0.7255, precision:0.7648, recall:0.6409, f1:0.6974, cost time:28.58 s, total num: 1100
if args.data == 'sighan_15' and args.model == 'convseq2seq':
from pycorrector.seq2seq.seq2seq_corrector import Seq2SeqCorrector
model = Seq2SeqCorrector()
eval.eval_sighan2015_by_model_batch(model.seq2seq_correct)
# Sentence Level: acc:0.3545, precision:0.2415, recall:0.1436, f1:0.1801, cost time:404.95 s
if args.data == 'sighan_15' and args.model == 'bartseq2seq':
from transformers import BertTokenizerFast
from textgen import BartSeq2SeqModel
tokenizer = BertTokenizerFast.from_pretrained('shibing624/bart4csc-base-chinese')
model = BartSeq2SeqModel(
encoder_type='bart',
encoder_decoder_type='bart',
encoder_decoder_name='shibing624/bart4csc-base-chinese',
tokenizer=tokenizer,
args={"max_length": 128})
eval.eval_sighan2015_by_model_batch(model.predict)
# Sentence Level: acc:0.6845, precision:0.6984, recall:0.6354, f1:0.6654
if args.data == 'corpus500' and args.model == 'rule':
# right_rate:0.486, right_count:243, total_count:500;
# recall_rate:0.18, recall_right_count:54, recall_total_count:300, spend_time:78 s
eval.eval_corpus500_by_model(pycorrector.correct)
if args.data == 'corpus500' and args.model == 'bert':
# right_rate:0.586, right_count:293, total_count:500;
# recall_rate:0.35, recall_right_count:105, recall_total_count:300, spend_time:1760 s
from pycorrector.bert.bert_corrector import BertCorrector
model = BertCorrector()
eval.eval_corpus500_by_model(model.bert_correct)
if args.data == 'corpus500' and args.model == 'macbert':
# Sentence Level: acc:0.724000, precision:0.912821, recall:0.595318, f1:0.720648, cost time:6.43 s
from pycorrector.macbert.macbert_corrector import MacBertCorrector
model = MacBertCorrector()
eval.eval_corpus500_by_model(model.macbert_correct)
if args.data == 'corpus500' and args.model == 'ernie':
# right_rate:0.598, right_count:299, total_count:500;
# recall_rate:0.41333333333333333, recall_right_count:124, recall_total_count:300, spend_time:6960 s
from pycorrector.ernie.ernie_corrector import ErnieCorrector
model = ErnieCorrector()
eval.eval_corpus500_by_model(model.ernie_correct)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, default='sighan_15', help='evaluate dataset, sighan_15/corpus500')
parser.add_argument('--model', type=str, default='rule', help='which model to evaluate, rule/bert/macbert/ernie')
args = parser.parse_args()
main(args)