forked from zhuomanliu/SCGN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
loss.py
executable file
·168 lines (138 loc) · 6.96 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import tensorflow as tf
import functools
import numpy as np
import math
import time
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import functional_ops
def Loss(weights, targets, pred_tanh, real_logits, fake_logits,
inputs_l, inputs_r, inv_l, inv_r, mode='train', choice='l1'):
# losses for disc.
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(real_logits), logits=real_logits))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.zeros_like(fake_logits), logits=fake_logits))
d_loss = d_loss_real + d_loss_fake
# losses for gen.
l1_loss = tf.reduce_mean(tf.abs(pred_tanh - targets))
inv_loss = inverse_loss(inputs_l, inputs_r, inv_l, inv_r)
adv_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(
labels=tf.ones_like(fake_logits), logits=fake_logits))
sharp_loss, pred_gau = sharpness_loss(pred_tanh, targets, choice) if weights[2] > 0 else [tf.zeros_like(adv_loss), tf.zeros_like(pred_tanh)]
g_loss = l1_loss + weights[0] * adv_loss + weights[1] * inv_loss + weights[2] * sharp_loss
metrics = compute_metrics(pred_tanh, targets) if mode == 'test' else None
iter_metrics = compute_metrics(pred_tanh, targets, 'iter')
return d_loss, g_loss, l1_loss, inv_loss, adv_loss, sharp_loss, metrics, pred_gau, iter_metrics
def inverse_loss(input_l, input_r, dc_l, dc_r):
perp_l = tf.abs(dc_l - input_l)
perp_r = tf.abs(dc_r - input_r)
return tf.reduce_mean(perp_l) + tf.reduce_mean(perp_r)
def sharpness_loss(pred, targ, choice='l1'):
pred_s, pred_gau = sharpness(pred)
targ_s, _ = sharpness(targ)
if choice == 'l1':
return tf.reduce_mean(tf.abs(pred_s - targ_s)), pred_gau
elif choice == 'mse':
return tf.reduce_mean((pred_s - targ_s)**2), pred_gau
else:
AssertionError("Invalid choice for sharpness loss!")
def sharpness(x, block_size=8):
"""global sharpness (ref. from logs model)"""
def gaussian_kernel(size: int, mean: float, std: float):
"""Makes 2D gaussian Kernel for convolution."""
d = tf.distributions.Normal(loc=float(mean), scale=float(std))
vals = d.prob(tf.range(start = -size, limit = size + 1, dtype = tf.float32))
gauss_kernel = tf.einsum('i,j->ij', vals, vals)
return gauss_kernel / (tf.reduce_sum(gauss_kernel)+1e-8)
def calc_std(img):
'''calculate sharpness std. in blocks (higher score for better quality)
--> sqrt(conv(x - avg_pool(x, k, s=1))^2, ones(k,k), s=k) / Z)'''
img_mean = tf.layers.average_pooling2d(img, block_size, strides=1, padding="SAME")
sum_filter = tf.tile(tf.ones([block_size, block_size])[:, :, tf.newaxis, tf.newaxis],
(1,1,img.shape[3],1))
img_sum = tf.nn.conv2d(tf.pow(img - img_mean, 2), sum_filter,
strides=[1, block_size, block_size, 1], padding="SAME")
std = tf.sqrt((tf.abs(img_sum) + 1e-8) / (block_size**2))
return std
# obtain reblurred synthesized image
# gauss_kernel = tf.tile(gaussian_kernel(3, 0, 5)[:, :, tf.newaxis, tf.newaxis],
# (1,1,x.shape[3],x.shape[3]))
gauss_kernel = gaussian_kernel(3, 0, 5)[:, :, tf.newaxis, tf.newaxis]
x_r, x_g, x_b = tf.expand_dims(x[...,0],-1), tf.expand_dims(x[...,1],-1), tf.expand_dims(x[...,2],-1)
x_r_blur = tf.nn.conv2d(x_r, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
x_g_blur = tf.nn.conv2d(x_g, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
x_b_blur = tf.nn.conv2d(x_b, gauss_kernel, strides=[1, 1, 1, 1], padding="SAME")
x_gau = tf.concat([x_r_blur, x_g_blur, x_b_blur], axis=3)
# calculate sharpness score between x and x_gau
std_x = calc_std(x)
std_x_gau = calc_std(x_gau)
Z = tf.cast(tf.floor(tf.shape(x)[1] / block_size) * tf.floor(tf.shape(x_gau)[2] / block_size), tf.float32)
# Z = 28**2
score = tf.sqrt(tf.abs(std_x - std_x_gau) + 1e-8) / Z
return score, x_gau
def compute_metrics(pred_tanh, targets, type='epoch'):
pred_255 = pred_tanh * 127.5 + 127.5
targets_255 = targets * 127.5 + 127.5
psnr = image_psnr(tf.reduce_mean((pred_255 - targets_255) ** 2))
msssim = tf.reduce_mean(tf.image.ssim_multiscale(pred_255, targets_255, 255))
if type == 'iter':
return psnr, msssim
mse = tf.reduce_mean((pred_tanh - targets) ** 2) * 127.5 + 127.5
l1 = tf.reduce_mean(tf.abs(pred_tanh - targets))
return psnr, msssim, mse, l1
def log10(x):
numerator = tf.log(x)
denominator = tf.log(tf.constant(10, dtype=numerator.dtype))
return numerator / denominator
def image_psnr(mse):
return 10 * log10(255.0 * 255.0 / (mse))
class Inception_Score(object):
'''
From https: // github.com / tsc2017 / inception - score
'''
def __init__(self, batch_size=64):
self.batch_size = batch_size
self.sess = tf.InteractiveSession()
self.images = tf.placeholder(tf.float32, [batch_size, None, None, 3])
self.logits = self.inception_logits()
def inception_logits(self, num_splits=1):
size = 299
tfgan = tf.contrib.gan
images = tf.image.resize_bilinear(self.images, [size, size])
generated_images_list = array_ops.split(
images, num_or_size_splits=num_splits)
logits = functional_ops.map_fn(
fn=functools.partial(tfgan.eval.run_inception, output_tensor='logits:0'),
elems=array_ops.stack(generated_images_list),
parallel_iterations=1,
back_prop=False,
swap_memory=True,
name='RunClassifier')
logits = array_ops.concat(array_ops.unstack(logits), 0)
return logits
def get_inception_probs(self, images):
preds = []
num = np.shape(images)[0]
n_batches = num // self.batch_size
for i in range(n_batches):
inp = images[i * self.batch_size:(i + 1) * self.batch_size]
pred = self.logits.eval({self.images:inp}, self.sess)[:,:1000]
preds.append(pred)
preds = np.concatenate(preds, 0)
preds=np.exp(preds) / np.sum(np.exp(preds), 1, keepdims=True)
return preds
@staticmethod
def preds2score(preds, splits):
scores = []
for i in range(splits):
part = preds[(i * preds.shape[0] // splits):((i + 1) * preds.shape[0] // splits), :]
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
kl = np.mean(np.sum(kl, 1))
scores.append(np.exp(kl))
return np.mean(scores), np.std(scores)
def run(self, images, splits=10):
assert(type(images) == np.ndarray)
assert(len(images.shape) == 4)
preds = self.get_inception_probs(images)
mean, std = self.preds2score(preds, splits)
return mean, std