-
Notifications
You must be signed in to change notification settings - Fork 20
/
CombinationSumII.java
63 lines (52 loc) · 1.6 KB
/
CombinationSumII.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
/**
* Given a collection of candidate numbers (C) and a target number (T),
* find all unique combinations in C where the candidate numbers sums to T.
* <p>
* Each number in C may only be used once in the combination.
* <p>
* Note:
* All numbers (including target) will be positive integers.
* The solution set must not contain duplicate combinations.
* For example, given candidate set [10, 1, 2, 7, 6, 1, 5] and target 8,
* A solution set is:
* [
* [1, 7],
* [1, 2, 5],
* [2, 6],
* [1, 1, 6]
* ]
* <p>
* Accepted.
*/
public class CombinationSumII {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
if (candidates.length == 0) {
return Collections.emptyList();
}
List<List<Integer>> lists = new ArrayList<>();
Arrays.sort(candidates);
dfs(candidates, target, new ArrayList<>(), lists, 0);
return lists;
}
private void dfs(int[] candidates, int target, List<Integer> path, List<List<Integer>> ret, int index) {
if (target < 0) {
return;
}
if (target == 0) {
ret.add(new ArrayList<>(path));
return;
}
for (int i = index; i < candidates.length; i++) {
if (i != index && candidates[i] == candidates[i - 1]) {
continue;
}
path.add(candidates[i]);
dfs(candidates, target - candidates[i], path, ret, i + 1);
path.remove(path.size() - 1);
}
}
}