You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
In #1056 (comment)@EgbertRijke raised the question whether we should keep with the type theory convention of having "isomorphisms" be in general maps with structure, or if we should reappropriate it for a well-behaved coherent concept.
For now we have the incoherent "isomorphisms in (large) (pre)categories" (invertible morphisms) and coherent "pointed isomorphisms" (biinvertible maps) are introduced in #1056.
The text was updated successfully, but these errors were encountered:
Hey! I'd just like to note that the notion of isomorphisms in precategories is not incoherent. Rather, it is coherent, but the definition is only coherent for set-level structures and doesn't generalize to higher structures without modifications.
In #1056 (comment) @EgbertRijke raised the question whether we should keep with the type theory convention of having "isomorphisms" be in general maps with structure, or if we should reappropriate it for a well-behaved coherent concept.
For now we have the incoherent "isomorphisms in (large) (pre)categories" (invertible morphisms) and coherent "pointed isomorphisms" (biinvertible maps) are introduced in #1056.
The text was updated successfully, but these errors were encountered: