generated from UofSC-Fall-2022-Math-300-H01/homework9
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.tex
100 lines (86 loc) · 3.16 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
\documentclass[12pt]{amsart}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{ebproof}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem*{theorem*}{Theorem}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{question}[theorem]{Question}
\newtheorem{caution}[theorem]{Caution}
\begin{document}
\title{Homework}
\maketitle
\begin{enumerate}
\item Translate the statement and proof of problem1 in Hw10.lean to
a pen-and-paper statement and proof.
\item Translate the statement and proof of problem2 in Hw10.lean to
a pen-and-paper statement and proof.
\item Translate the statement and proof of problem3 in Hw10.lean to
a pen-and-paper statement and proof.
\item Below is a theorem and proof. Translate the statement as a
theorem problem4 and give a proof of it in Lean in Hw10.lean.
\begin{theorem*}
Let $f : A \to B$ and $g : B \to C$ be
functions. If $d : B \to A$ is a left inverse to $f$ and
$e : C \to B$ is a left inverse to $g$, then $d \circ e$ is a left
inverse to $g \circ f$.
\end{theorem*}
\begin{proof}
To be a left inverse we need to show that
\begin{displaymath}
(d \circ e) \circ (g \circ f) = \operatorname{id}_A
\end{displaymath}
for all $a$. Using the fact that composition is associative,
we can rewrite the left-hand side as
\begin{displaymath}
(d \circ e) \circ (g \circ f) = d \circ (e \circ g) \circ f
\end{displaymath}
By definition of a left inverse, we know that $e \circ g =
\operatorname{id}_B$ so we can rewrite again
\begin{displaymath}
d \circ (e \circ g) \circ f = d \circ \operatorname{id}_B
\circ f
\end{displaymath}
Since composition with the identity function is the identity we
have
\begin{displaymath}
d \circ \operatorname{id}_B \circ f = d \circ f
\end{displaymath}
Finally, as $d$ is a left inverse to $f$, we have
\begin{displaymath}
d \circ f = \operatorname{id}_A
\end{displaymath}
\end{proof}
\item Below is a theorem and proof. Translate the statement as a
theorem labeled problem5 give a proof of it in Lean in Hw10.lean.
\begin{theorem*}
Being in bijection is symmetric. More precisely, if there exists a bijection
$A \cong B$, then there also exists a bijection $B \cong A$.
\end{theorem*}
\begin{proof}
Let $f : A \to B$ be a bijection. Since $f$ is a bijection, it has
an inverse $f^{-1} : B \to A$ which satisfies $f \circ f^{-1} =
\operatorname{id}_B$ and $f^{-1} \circ f = \operatorname{id}_A$. We
claim that $f^{-1}$ is also bijection. But the conditions we just
listed imply that $f$ is the inverse of $f^{-1}$. Since $f^{-1}$
has an inverse, it is a bijection also.
\end{proof}
\end{enumerate}
\end{document}