forked from wuzaipei/python_TensorFlow_yolov3-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kmeans.py
141 lines (115 loc) · 4.84 KB
/
kmeans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#! /usr/bin/env python
# coding=utf-8
#================================================================
# Copyright (C) 2019 * Ltd. All rights reserved.
#
# Editor : VIM
# File name : kmeans.py
# Author : YunYang1994
# Created date: 2019-01-25 11:08:15
# Description :
#
#================================================================
import cv2
import argparse
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
current_palette = list(sns.xkcd_rgb.values())
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
param:
box: tuple or array, shifted to the origin (i. e. width and height)
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = intersection / (box_area + cluster_area - intersection)
return iou_
def kmeans(boxes, k, dist=np.median,seed=1):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
:param boxes: numpy array of shape (r, 2), where r is the number of rows
:param k: number of clusters
:param dist: distance function
:return: numpy array of shape (k, 2)
"""
rows = boxes.shape[0]
distances = np.empty((rows, k)) ## N row x N cluster
last_clusters = np.zeros((rows,))
np.random.seed(seed)
# initialize the cluster centers to be k items
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True:
# Step 1: allocate each item to the closest cluster centers
for icluster in range(k): # I made change to lars76's code here to make the code faster
distances[:,icluster] = 1 - iou(clusters[icluster], boxes)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
break
# Step 2: calculate the cluster centers as mean (or median) of all the cases in the clusters.
for cluster in range(k):
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters, nearest_clusters, distances
def parse_anno(annotation_path):
anno = open(annotation_path, 'r')
result = []
for line in anno:
s = line.strip().split(' ')
image = cv2.imread(s[0])
image_h, image_w = image.shape[:2]
s = s[1:]
box_cnt = len(s) // 5
for i in range(box_cnt):
x_min, y_min, x_max, y_max = float(s[i*5+0]), float(s[i*5+1]), float(s[i*5+2]), float(s[i*5+3])
width = (x_max - x_min) / image_w
height = (y_max - y_min) / image_h
result.append([width, height])
result = np.asarray(result)
return result
def plot_cluster_result(clusters,nearest_clusters,WithinClusterSumDist,wh,k):
for icluster in np.unique(nearest_clusters):
pick = nearest_clusters==icluster
c = current_palette[icluster]
plt.rc('font', size=8)
plt.plot(wh[pick,0],wh[pick,1],"p",
color=c,
alpha=0.5,label="cluster = {}, N = {:6.0f}".format(icluster,np.sum(pick)))
plt.text(clusters[icluster,0],
clusters[icluster,1],
"c{}".format(icluster),
fontsize=20,color="red")
plt.title("Clusters=%d" %k)
plt.xlabel("width")
plt.ylabel("height")
plt.legend(title="Mean IoU = {:5.4f}".format(WithinClusterSumDist))
plt.tight_layout()
plt.savefig("./kmeans.jpg")
plt.show()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_txt", type=str, default="./raccoon_dataset/label_wzp.txt")
parser.add_argument("--anchors_txt", type=str, default="./data/raccoon_anchors_wzp.txt")
parser.add_argument("--cluster_num", type=int, default=9)
args = parser.parse_args()
anno_result = parse_anno(args.dataset_txt)
clusters, nearest_clusters, distances = kmeans(anno_result, args.cluster_num)
# sorted by area
area = clusters[:, 0] * clusters[:, 1]
indice = np.argsort(area)
clusters = clusters[indice]
with open(args.anchors_txt, "w") as f:
for i in range(args.cluster_num):
width, height = clusters[i]
f.writelines(str(width) + " " + str(height) + " ")
WithinClusterMeanDist = np.mean(distances[np.arange(distances.shape[0]),nearest_clusters])
plot_cluster_result(clusters, nearest_clusters, 1-WithinClusterMeanDist, anno_result, args.cluster_num)