-
Notifications
You must be signed in to change notification settings - Fork 115
/
datasets.py
874 lines (670 loc) · 31.3 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
import torch.utils.data as data
import torch
from PIL import Image
import numpy as np
from torchvision.datasets import MNIST, CIFAR10, SVHN, FashionMNIST, CIFAR100, ImageFolder, DatasetFolder, utils
from torchvision.datasets.vision import VisionDataset
from torchvision.datasets.utils import download_file_from_google_drive, check_integrity
from functools import partial
from typing import Optional, Callable
from torch.utils.model_zoo import tqdm
import PIL
import tarfile
import torchvision
import os
import os.path
import logging
import torchvision.datasets.utils as utils
logging.basicConfig()
logger = logging.getLogger()
logger.setLevel(logging.INFO)
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def mkdirs(dirpath):
try:
os.makedirs(dirpath)
except Exception as _:
pass
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class CustomTensorDataset(data.TensorDataset):
def __getitem__(self, index):
return tuple(tensor[index] for tensor in self.tensors) + (index,)
class MNIST_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
mnist_dataobj = MNIST(self.root, self.train, self.transform, self.target_transform, self.download)
# if self.train:
# data = mnist_dataobj.train_data
# target = mnist_dataobj.train_labels
# else:
# data = mnist_dataobj.test_data
# target = mnist_dataobj.test_labels
data = mnist_dataobj.data
target = mnist_dataobj.targets
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
# print("mnist img:", img)
# print("mnist target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
class FashionMNIST_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
mnist_dataobj = FashionMNIST(self.root, self.train, self.transform, self.target_transform, self.download)
# if self.train:
# data = mnist_dataobj.train_data
# target = mnist_dataobj.train_labels
# else:
# data = mnist_dataobj.test_data
# target = mnist_dataobj.test_labels
data = mnist_dataobj.data
target = mnist_dataobj.targets
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(img.numpy(), mode='L')
# print("mnist img:", img)
# print("mnist target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
class SVHN_custom(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
if self.train is True:
# svhn_dataobj1 = SVHN(self.root, 'train', self.transform, self.target_transform, self.download)
# svhn_dataobj2 = SVHN(self.root, 'extra', self.transform, self.target_transform, self.download)
# data = np.concatenate((svhn_dataobj1.data, svhn_dataobj2.data), axis=0)
# target = np.concatenate((svhn_dataobj1.labels, svhn_dataobj2.labels), axis=0)
svhn_dataobj = SVHN(self.root, 'train', self.transform, self.target_transform, self.download)
data = svhn_dataobj.data
target = svhn_dataobj.labels
else:
svhn_dataobj = SVHN(self.root, 'test', self.transform, self.target_transform, self.download)
data = svhn_dataobj.data
target = svhn_dataobj.labels
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
# print("svhn data:", data)
# print("len svhn data:", len(data))
# print("type svhn data:", type(data))
# print("svhn target:", target)
# print("type svhn target", type(target))
return data, target
# def truncate_channel(self, index):
# for i in range(index.shape[0]):
# gs_index = index[i]
# self.data[gs_index, :, :, 1] = 0.0
# self.data[gs_index, :, :, 2] = 0.0
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# print("svhn img:", img)
# print("svhn target:", target)
# doing this so that it is consistent with all other datasets
# to return a PIL Image
img = Image.fromarray(np.transpose(img, (1, 2, 0)))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
# torchvision CelebA
class CelebA_custom(VisionDataset):
"""`Large-scale CelebFaces Attributes (CelebA) Dataset <http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
split (string): One of {'train', 'valid', 'test', 'all'}.
Accordingly dataset is selected.
target_type (string or list, optional): Type of target to use, ``attr``, ``identity``, ``bbox``,
or ``landmarks``. Can also be a list to output a tuple with all specified target types.
The targets represent:
``attr`` (np.array shape=(40,) dtype=int): binary (0, 1) labels for attributes
``identity`` (int): label for each person (data points with the same identity are the same person)
``bbox`` (np.array shape=(4,) dtype=int): bounding box (x, y, width, height)
``landmarks`` (np.array shape=(10,) dtype=int): landmark points (lefteye_x, lefteye_y, righteye_x,
righteye_y, nose_x, nose_y, leftmouth_x, leftmouth_y, rightmouth_x, rightmouth_y)
Defaults to ``attr``. If empty, ``None`` will be returned as target.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
base_folder = "celeba"
# There currently does not appear to be a easy way to extract 7z in python (without introducing additional
# dependencies). The "in-the-wild" (not aligned+cropped) images are only in 7z, so they are not available
# right now.
file_list = [
# File ID MD5 Hash Filename
("0B7EVK8r0v71pZjFTYXZWM3FlRnM", "00d2c5bc6d35e252742224ab0c1e8fcb", "img_align_celeba.zip"),
# ("0B7EVK8r0v71pbWNEUjJKdDQ3dGc", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_align_celeba_png.7z"),
# ("0B7EVK8r0v71peklHb0pGdDl6R28", "b6cd7e93bc7a96c2dc33f819aa3ac651", "img_celeba.7z"),
("0B7EVK8r0v71pblRyaVFSWGxPY0U", "75e246fa4810816ffd6ee81facbd244c", "list_attr_celeba.txt"),
("1_ee_0u7vcNLOfNLegJRHmolfH5ICW-XS", "32bd1bd63d3c78cd57e08160ec5ed1e2", "identity_CelebA.txt"),
("0B7EVK8r0v71pbThiMVRxWXZ4dU0", "00566efa6fedff7a56946cd1c10f1c16", "list_bbox_celeba.txt"),
("0B7EVK8r0v71pd0FJY3Blby1HUTQ", "cc24ecafdb5b50baae59b03474781f8c", "list_landmarks_align_celeba.txt"),
# ("0B7EVK8r0v71pTzJIdlJWdHczRlU", "063ee6ddb681f96bc9ca28c6febb9d1a", "list_landmarks_celeba.txt"),
("0B7EVK8r0v71pY0NSMzRuSXJEVkk", "d32c9cbf5e040fd4025c592c306e6668", "list_eval_partition.txt"),
]
def __init__(self, root, dataidxs=None, split="train", target_type="attr", transform=None,
target_transform=None, download=False):
import pandas
super(CelebA_custom, self).__init__(root, transform=transform,
target_transform=target_transform)
self.split = split
if isinstance(target_type, list):
self.target_type = target_type
else:
self.target_type = [target_type]
if not self.target_type and self.target_transform is not None:
raise RuntimeError('target_transform is specified but target_type is empty')
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
split_map = {
"train": 0,
"valid": 1,
"test": 2,
"all": None,
}
split = split_map[split.lower()]
fn = partial(os.path.join, self.root, self.base_folder)
splits = pandas.read_csv(fn("list_eval_partition.txt"), delim_whitespace=True, header=None, index_col=0)
identity = pandas.read_csv(fn("identity_CelebA.txt"), delim_whitespace=True, header=None, index_col=0)
bbox = pandas.read_csv(fn("list_bbox_celeba.txt"), delim_whitespace=True, header=1, index_col=0)
landmarks_align = pandas.read_csv(fn("list_landmarks_align_celeba.txt"), delim_whitespace=True, header=1)
attr = pandas.read_csv(fn("list_attr_celeba.txt"), delim_whitespace=True, header=1)
mask = slice(None) if split is None else (splits[1] == split)
self.filename = splits[mask].index.values
self.identity = torch.as_tensor(identity[mask].values)
self.bbox = torch.as_tensor(bbox[mask].values)
self.landmarks_align = torch.as_tensor(landmarks_align[mask].values)
self.attr = torch.as_tensor(attr[mask].values)
self.attr = (self.attr + 1) // 2 # map from {-1, 1} to {0, 1}
self.attr_names = list(attr.columns)
self.gender_index = self.attr_names.index('Male')
self.dataidxs = dataidxs
if self.dataidxs is None:
self.target = self.attr[:, self.gender_index:self.gender_index + 1].reshape(-1)
else:
self.target = self.attr[self.dataidxs, self.gender_index:self.gender_index + 1].reshape(-1)
def _check_integrity(self):
for (_, md5, filename) in self.file_list:
fpath = os.path.join(self.root, self.base_folder, filename)
_, ext = os.path.splitext(filename)
# Allow original archive to be deleted (zip and 7z)
# Only need the extracted images
if ext not in [".zip", ".7z"] and not check_integrity(fpath, md5):
return False
# Should check a hash of the images
return os.path.isdir(os.path.join(self.root, self.base_folder, "img_align_celeba"))
def download(self):
import zipfile
if self._check_integrity():
print('Files already downloaded and verified')
return
for (file_id, md5, filename) in self.file_list:
download_file_from_google_drive(file_id, os.path.join(self.root, self.base_folder), filename, md5)
with zipfile.ZipFile(os.path.join(self.root, self.base_folder, "img_align_celeba.zip"), "r") as f:
f.extractall(os.path.join(self.root, self.base_folder))
def __getitem__(self, index):
if self.dataidxs is None:
X = PIL.Image.open(os.path.join(self.root, self.base_folder, "img_align_celeba", self.filename[index]))
target = []
for t in self.target_type:
if t == "attr":
target.append(self.attr[index, self.gender_index])
elif t == "identity":
target.append(self.identity[index, 0])
elif t == "bbox":
target.append(self.bbox[index, :])
elif t == "landmarks":
target.append(self.landmarks_align[index, :])
else:
# TODO: refactor with utils.verify_str_arg
raise ValueError("Target type \"{}\" is not recognized.".format(t))
else:
X = PIL.Image.open(os.path.join(self.root, self.base_folder, "img_align_celeba", self.filename[self.dataidxs[index]]))
target = []
for t in self.target_type:
if t == "attr":
target.append(self.attr[self.dataidxs[index], self.gender_index])
elif t == "identity":
target.append(self.identity[self.dataidxs[index], 0])
elif t == "bbox":
target.append(self.bbox[self.dataidxs[index], :])
elif t == "landmarks":
target.append(self.landmarks_align[self.dataidxs[index], :])
else:
# TODO: refactor with utils.verify_str_arg
raise ValueError("Target type \"{}\" is not recognized.".format(t))
if self.transform is not None:
X = self.transform(X)
#print("target[0]:", target[0])
if target:
target = tuple(target) if len(target) > 1 else target[0]
if self.target_transform is not None:
target = self.target_transform(target)
else:
target = None
#print("celeba target:", target)
return X, target
def __len__(self):
if self.dataidxs is None:
return len(self.attr)
else:
return len(self.dataidxs)
def extra_repr(self):
lines = ["Target type: {target_type}", "Split: {split}"]
return '\n'.join(lines).format(**self.__dict__)
class CIFAR10_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
cifar_dataobj = CIFAR10(self.root, self.train, self.transform, self.target_transform, self.download)
data = cifar_dataobj.data
target = np.array(cifar_dataobj.targets)
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def truncate_channel(self, index):
for i in range(index.shape[0]):
gs_index = index[i]
self.data[gs_index, :, :, 1] = 0.0
self.data[gs_index, :, :, 2] = 0.0
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
# print("cifar10 img:", img)
# print("cifar10 target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
def gen_bar_updater() -> Callable[[int, int, int], None]:
pbar = tqdm(total=None)
def bar_update(count, block_size, total_size):
if pbar.total is None and total_size:
pbar.total = total_size
progress_bytes = count * block_size
pbar.update(progress_bytes - pbar.n)
return bar_update
def download_url(url: str, root: str, filename: Optional[str] = None, md5: Optional[str] = None) -> None:
"""Download a file from a url and place it in root.
Args:
url (str): URL to download file from
root (str): Directory to place downloaded file in
filename (str, optional): Name to save the file under. If None, use the basename of the URL
md5 (str, optional): MD5 checksum of the download. If None, do not check
"""
import urllib
root = os.path.expanduser(root)
if not filename:
filename = os.path.basename(url)
fpath = os.path.join(root, filename)
os.makedirs(root, exist_ok=True)
# check if file is already present locally
if check_integrity(fpath, md5):
print('Using downloaded and verified file: ' + fpath)
else: # download the file
try:
print('Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater()
)
except (urllib.error.URLError, IOError) as e: # type: ignore[attr-defined]
if url[:5] == 'https':
url = url.replace('https:', 'http:')
print('Failed download. Trying https -> http instead.'
' Downloading ' + url + ' to ' + fpath)
urllib.request.urlretrieve(
url, fpath,
reporthook=gen_bar_updater()
)
else:
raise e
# check integrity of downloaded file
if not check_integrity(fpath, md5):
raise RuntimeError("File not found or corrupted.")
def _is_tarxz(filename: str) -> bool:
return filename.endswith(".tar.xz")
def _is_tar(filename: str) -> bool:
return filename.endswith(".tar")
def _is_targz(filename: str) -> bool:
return filename.endswith(".tar.gz")
def _is_tgz(filename: str) -> bool:
return filename.endswith(".tgz")
def _is_gzip(filename: str) -> bool:
return filename.endswith(".gz") and not filename.endswith(".tar.gz")
def _is_zip(filename: str) -> bool:
return filename.endswith(".zip")
def extract_archive(from_path: str, to_path: Optional[str] = None, remove_finished: bool = False) -> None:
if to_path is None:
to_path = os.path.dirname(from_path)
if _is_tar(from_path):
with tarfile.open(from_path, 'r') as tar:
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise Exception("Attempted Path Traversal in Tar File")
tar.extractall(path, members, numeric_owner=numeric_owner)
safe_extract(tar, path=to_path)
elif _is_targz(from_path) or _is_tgz(from_path):
with tarfile.open(from_path, 'r:gz') as tar:
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise Exception("Attempted Path Traversal in Tar File")
tar.extractall(path, members, numeric_owner=numeric_owner)
safe_extract(tar, path=to_path)
elif _is_tarxz(from_path):
with tarfile.open(from_path, 'r:xz') as tar:
def is_within_directory(directory, target):
abs_directory = os.path.abspath(directory)
abs_target = os.path.abspath(target)
prefix = os.path.commonprefix([abs_directory, abs_target])
return prefix == abs_directory
def safe_extract(tar, path=".", members=None, *, numeric_owner=False):
for member in tar.getmembers():
member_path = os.path.join(path, member.name)
if not is_within_directory(path, member_path):
raise Exception("Attempted Path Traversal in Tar File")
tar.extractall(path, members, numeric_owner=numeric_owner)
safe_extract(tar, path=to_path)
elif _is_gzip(from_path):
to_path = os.path.join(to_path, os.path.splitext(os.path.basename(from_path))[0])
with open(to_path, "wb") as out_f, gzip.GzipFile(from_path) as zip_f:
out_f.write(zip_f.read())
elif _is_zip(from_path):
with zipfile.ZipFile(from_path, 'r') as z:
z.extractall(to_path)
else:
raise ValueError("Extraction of {} not supported".format(from_path))
if remove_finished:
os.remove(from_path)
def download_and_extract_archive(
url: str,
download_root: str,
extract_root: Optional[str] = None,
filename: Optional[str] = None,
md5: Optional[str] = None,
remove_finished: bool = False,
) -> None:
download_root = os.path.expanduser(download_root)
if extract_root is None:
extract_root = download_root
if not filename:
filename = os.path.basename(url)
download_url(url, download_root, filename, md5)
archive = os.path.join(download_root, filename)
print("Extracting {} to {}".format(archive, extract_root))
extract_archive(archive, extract_root, remove_finished)
class FEMNIST(MNIST):
"""
This dataset is derived from the Leaf repository
(https://github.com/TalwalkarLab/leaf) pre-processing of the Extended MNIST
dataset, grouping examples by writer. Details about Leaf were published in
"LEAF: A Benchmark for Federated Settings" https://arxiv.org/abs/1812.01097.
"""
resources = [
('https://raw.githubusercontent.com/tao-shen/FEMNIST_pytorch/master/femnist.tar.gz',
'59c65cec646fc57fe92d27d83afdf0ed')]
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None,
download=False):
super(MNIST, self).__init__(root, transform=transform,
target_transform=target_transform)
self.train = train
self.dataidxs = dataidxs
if download:
self.download()
if not self._check_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
if self.train:
data_file = self.training_file
else:
data_file = self.test_file
self.data, self.targets, self.users_index = torch.load(os.path.join(self.processed_folder, data_file))
if self.dataidxs is not None:
self.data = self.data[self.dataidxs]
self.targets = self.targets[self.dataidxs]
def __getitem__(self, index):
img, target = self.data[index], int(self.targets[index])
img = Image.fromarray(img.numpy(), mode='F')
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def download(self):
"""Download the FEMNIST data if it doesn't exist in processed_folder already."""
import shutil
if self._check_exists():
return
mkdirs(self.raw_folder)
mkdirs(self.processed_folder)
# download files
for url, md5 in self.resources:
filename = url.rpartition('/')[2]
download_and_extract_archive(url, download_root=self.raw_folder, filename=filename, md5=md5)
# process and save as torch files
print('Processing...')
shutil.move(os.path.join(self.raw_folder, self.training_file), self.processed_folder)
shutil.move(os.path.join(self.raw_folder, self.test_file), self.processed_folder)
def __len__(self):
return len(self.data)
def _check_exists(self) -> bool:
return all(
check_integrity(os.path.join(self.raw_folder, os.path.splitext(os.path.basename(url))[0]+os.path.splitext(os.path.basename(url))[1]))
for url, _ in self.resources
)
class Generated(MNIST):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None,
download=False):
super(MNIST, self).__init__(root, transform=transform,
target_transform=target_transform)
self.train = train
self.dataidxs = dataidxs
if self.train:
self.data = np.load("data/generated/X_train.npy")
self.targets = np.load("data/generated/y_train.npy")
else:
self.data = np.load("data/generated/X_test.npy")
self.targets = np.load("data/generated/y_test.npy")
if self.dataidxs is not None:
self.data = self.data[self.dataidxs]
self.targets = self.targets[self.dataidxs]
def __getitem__(self, index):
data, target = self.data[index], self.targets[index]
return data, target
def __len__(self):
return len(self.data)
class genData(MNIST):
def __init__(self, data, targets):
self.data = data
self.targets = targets
def __getitem__(self,index):
data, target = self.data[index], self.targets[index]
return data, target
def __len__(self):
return len(self.data)
class CIFAR100_truncated(data.Dataset):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=False):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
self.download = download
self.data, self.target = self.__build_truncated_dataset__()
def __build_truncated_dataset__(self):
cifar_dataobj = CIFAR100(self.root, self.train, self.transform, self.target_transform, self.download)
if torchvision.__version__ == '0.2.1':
if self.train:
data, target = cifar_dataobj.train_data, np.array(cifar_dataobj.train_labels)
else:
data, target = cifar_dataobj.test_data, np.array(cifar_dataobj.test_labels)
else:
data = cifar_dataobj.data
target = np.array(cifar_dataobj.targets)
if self.dataidxs is not None:
data = data[self.dataidxs]
target = target[self.dataidxs]
return data, target
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is index of the target class.
"""
img, target = self.data[index], self.target[index]
img = Image.fromarray(img)
# print("cifar10 img:", img)
# print("cifar10 target:", target)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.data)
class ImageFolder_custom(DatasetFolder):
def __init__(self, root, dataidxs=None, train=True, transform=None, target_transform=None, download=None):
self.root = root
self.dataidxs = dataidxs
self.train = train
self.transform = transform
self.target_transform = target_transform
imagefolder_obj = ImageFolder(self.root, self.transform, self.target_transform)
self.loader = imagefolder_obj.loader
if self.dataidxs is not None:
self.samples = np.array(imagefolder_obj.samples)[self.dataidxs]
else:
self.samples = np.array(imagefolder_obj.samples)
def __getitem__(self, index):
path = self.samples[index][0]
target = self.samples[index][1]
target = int(target)
sample = self.loader(path)
if self.transform is not None:
sample = self.transform(sample)
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target
def __len__(self):
if self.dataidxs is None:
return len(self.samples)
else:
return len(self.dataidxs)