Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Reproducing DAVIS 2017 Validation Results #31

Open
m43 opened this issue Jun 17, 2023 · 2 comments
Open

Reproducing DAVIS 2017 Validation Results #31

m43 opened this issue Jun 17, 2023 · 2 comments

Comments

@m43
Copy link

m43 commented Jun 17, 2023

Thanks for the nice work! I am having trouble reproducing the 71.9 mean $\mathcal{J}\&\mathcal{F}$ result reported for PerSAM-F on the semi-supervised video object segmentation task on the DAVIS 2017 validation subset in Table 2. What hyperparameters should be used? What per-scene results should be expected?

@m43
Copy link
Author

m43 commented Jun 17, 2023

The best result I got is 59.7, with a topk of 2, a finetuning learning rate of 4e-3, and 2000 finetuning epochs. This gives, for example, the predicted masks and per-scene results below.
predictions-only_0_86e6bff9f36c07bdf026
predictions-only_1_d3e8a29bd6748ddcfc3c
predictions-only_2_45d1bfd6b6b9e262a0f4

Sequence J-Mean F-Mean
bike-packing_1 0.6399064035270406 0.6241200522856292
bike-packing_2 0.8667416520867692 0.8497188456668301
blackswan_1 0.9516698203640184 0.969898338047989
bmx-trees_1 0.20352158490853473 0.465861688539066
bmx-trees_2 0.7664777627175673 0.8938505844361433
breakdance_1 0.9152909804065635 0.943285426906372
camel_1 0.9776202249636236 0.9906858461475901
car-roundabout_1 0.9497893556280378 0.9403696351951556
car-shadow_1 0.9283267451962578 0.957482035987094
cows_1 0.9624527211240835 0.9726087073767071
dance-twirl_1 0.890103309394986 0.8917722900285995
dog_1 0.9638740725435088 0.9856044300462039
dogs-jump_1 0.32951978161344875 0.507563871259939
dogs-jump_2 0.22162237410268776 0.2413872123849592
dogs-jump_3 0.9529795129571599 0.9892650870325214
drift-chicane_1 0.8470769707651081 0.90579919046004
drift-straight_1 0.7588246426360858 0.770296007149966
goat_1 0.9248254707678853 0.9546408434012638
gold-fish_1 0.583355884650908 0.584923006030584
gold-fish_2 0.43872421912712223 0.4792727344374414
gold-fish_3 0.45549363707338214 0.4654088999613936
gold-fish_4 0.8191387079417671 0.8793214491937217
gold-fish_5 0.7275326942435778 0.6764959665878534
horsejump-high_1 0.7839485647077783 0.8851922660540791
horsejump-high_2 0.827871067571159 0.9218180503802359
india_1 0.47573090052413525 0.4958476134790285
india_2 0.07469925630742402 0.11236208776118921
india_3 0.16422235353697984 0.2303529508531234
judo_1 0.706599003950618 0.813309299423999
judo_2 0.26105820311699635 0.31823222119287303
kite-surf_1 0.07553332424826725 0.2472583450543017
kite-surf_2 0.26225473884919664 0.4437874561623833
kite-surf_3 0.7296526090543175 0.9263191237624829
lab-coat_1 0.021441803017182404 0.23832778355659331
lab-coat_2 0 0
lab-coat_3 0.7290292927018328 0.6646606163991821
lab-coat_4 0.5420454299961217 0.5584672336962134
lab-coat_5 0.11566918400099466 0.1797906055259418
libby_1 0.9065775051356089 0.9678424917167289
loading_1 0.7199033779678851 0.732701631116802
loading_2 0.19615814671285867 0.2710120163281799
loading_3 0.06663060708528533 0.0978663900073181
mbike-trick_1 0.7416047909979043 0.8083034335640074
mbike-trick_2 0.6157892235327584 0.6782859574905682
motocross-jump_1 0.7742488479778837 0.7967092765613831
motocross-jump_2 0.7036048254746714 0.6141995226404211
paragliding-launch_1 0.4587810753759272 0.5897981648860823
paragliding-launch_2 0.4014951939461899 0.6576252860452271
paragliding-launch_3 0.08734684813736891 0.3043779602008625
parkour_1 0.9298545967908415 0.9474569010791223
pigs_1 0.5018181361957516 0.6702886749807105
pigs_2 0.404052123244028 0.6085168970597492
pigs_3 0.8843122262655969 0.8842419865726584
scooter-black_1 0.06581748644121999 0.08110654104438361
scooter-black_2 0.396784845010354 0.42920183276557317
shooting_1 0.6328113362608301 0.6366941703094167
shooting_2 0.683726855472171 0.6854570653258045
shooting_3 0.8926766781358134 0.9687601763773861
soapbox_1 0.5642825851351866 0.6285686277101605
soapbox_2 0.09202095590336416 0.12124133601504176
soapbox_3 0.062035644450239597 0.08169302538331341

@m43
Copy link
Author

m43 commented Jun 17, 2023

However, I do get a close number when evaluating on the DAVIS 2016 (not 2017) validation subset and with hyperparameters suggested in the paper (topk=2, lr=4e-4, epochs=800), wondering if this is a coincidence

Method JF_mean J_mean J_recall J_decay F_mean F_recall F_decay
eval_D16_val 0.712 0.701 0.767 0.086 0.723 0.758 0.077

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant