-
Notifications
You must be signed in to change notification settings - Fork 5
/
valueIterationAgents.py
231 lines (194 loc) · 9.05 KB
/
valueIterationAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# valueIterationAgents.py
# -----------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
# valueIterationAgents.py
# -----------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import mdp, util, copy
from learningAgents import ValueEstimationAgent
import collections
class ValueIterationAgent(ValueEstimationAgent):
"""
* Please read learningAgents.py before reading this.*
A ValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs value iteration
for a given number of iterations using the supplied
discount factor.
"""
def __init__(self, mdp, discount = 0.9, iterations = 100):
"""
Your value iteration agent should take an mdp on
construction, run the indicated number of iterations
and then act according to the resulting policy.
Some useful mdp methods you will use:
mdp.getStates()
mdp.getPossibleActions(state)
mdp.getTransitionStatesAndProbs(state, action)
mdp.getReward(state, action, nextState)
mdp.isTerminal(state)
"""
self.mdp = mdp
self.discount = discount
self.iterations = iterations
self.values = util.Counter() # A Counter is a dict with default 0
self.runValueIteration()
def runValueIteration(self):
# Write value iteration code here
for iter in range(0, self.iterations):
newQValues = self.values.copy()
for state in self.mdp.getStates():
if self.mdp.isTerminal(state):
continue
bestAction = self.computeActionFromValues(state)
QValue = self.computeQValueFromValues(state, bestAction)
newQValues[state] = QValue
self.values = newQValues
def getValue(self, state):
"""
Return the value of the state (computed in __init__).
"""
return self.values[state]
def computeQValueFromValues(self, state, action):
"""
Compute the Q-value of action in state from the
value function stored in self.values.
"""
nextTransitions = self.mdp.getTransitionStatesAndProbs(state, action)
QValue = 0
for nextState, probs in nextTransitions:
nextReward = self.mdp.getReward(state, action, nextState)
discount = self.discount
futureQVal = self.getValue(nextState)
QValue += probs * (nextReward + discount * futureQVal)
return QValue
def computeActionFromValues(self, state):
"""
The policy is the best action in the given state
according to the values currently stored in self.values.
You may break ties any way you see fit. Note that if
there are no legal actions, which is the case at the
terminal state, you should return None.
"""
if self.mdp.isTerminal(state):
return None
possibleActions = self.mdp.getPossibleActions(state)
actionQValues = util.Counter()
for possibleAction in possibleActions:
actionQValues[possibleAction] = self.computeQValueFromValues(state, possibleAction)
bestAction = actionQValues.argMax()
return bestAction
def getPolicy(self, state):
return self.computeActionFromValues(state)
def getAction(self, state):
"Returns the policy at the state (no exploration)."
return self.computeActionFromValues(state)
def getQValue(self, state, action):
return self.computeQValueFromValues(state, action)
class AsynchronousValueIterationAgent(ValueIterationAgent):
"""
* Please read learningAgents.py before reading this.*
An AsynchronousValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs cyclic value iteration
for a given number of iterations using the supplied
discount factor.
"""
def __init__(self, mdp, discount = 0.9, iterations = 1000):
"""
Your cyclic value iteration agent should take an mdp on
construction, run the indicated number of iterations,
and then act according to the resulting policy. Each iteration
updates the value of only one state, which cycles through
the states list. If the chosen state is terminal, nothing
happens in that iteration.
Some useful mdp methods you will use:
mdp.getStates()
mdp.getPossibleActions(state)
mdp.getTransitionStatesAndProbs(state, action)
mdp.getReward(state)
mdp.isTerminal(state)
"""
ValueIterationAgent.__init__(self, mdp, discount, iterations)
def runValueIteration(self):
mdpStates = self.mdp.getStates()
indexIterator = 0
for iter in range(0, self.iterations):
if indexIterator == len(mdpStates): indexIterator = 0
targetState = mdpStates[indexIterator]
indexIterator += 1
if self.mdp.isTerminal(targetState):
continue
bestAction = self.computeActionFromValues(targetState)
QValue = self.computeQValueFromValues(targetState,
bestAction)
self.values[targetState] = QValue
class PrioritizedSweepingValueIterationAgent(AsynchronousValueIterationAgent):
"""
* Please read learningAgents.py before reading this.*
A PrioritizedSweepingValueIterationAgent takes a Markov decision process
(see mdp.py) on initialization and runs prioritized sweeping value iteration
for a given number of iterations using the supplied parameters.
"""
def __init__(self, mdp, discount = 0.9, iterations = 100, theta = 1e-5):
"""
Your prioritized sweeping value iteration agent should take an mdp on
construction, run the indicated number of iterations,
and then act according to the resulting policy.
"""
self.theta = theta
ValueIterationAgent.__init__(self, mdp, discount, iterations)
def runValueIteration(self):
# Initialize an empty priority queue
self.queue = util.PriorityQueue()
self.predecessors = util.Counter()
for s in self.mdp.getStates():
if not self.mdp.isTerminal(s):
self.predecessors[s] = set()
for s in self.mdp.getStates():
if self.mdp.isTerminal(s):
continue
# compute predecessors for state s
possibleActions = self.mdp.getPossibleActions(s)
for action in possibleActions:
nextTransitions = self.mdp.getTransitionStatesAndProbs(s, action)
for nextState, prob in nextTransitions:
if prob != 0 and not self.mdp.isTerminal(nextState):
self.predecessors[nextState].add(s)
# calculate priority and push into queue
currentValue = self.values[s]
bestAction = self.computeActionFromValues(s)
highestQValue = self.computeQValueFromValues(s, bestAction)
diff = abs(currentValue - highestQValue)
self.queue.push(s, -diff)
for iter in range(0, self.iterations):
if self.queue.isEmpty():
# terminate
return
s = self.queue.pop()
# calculate Q-value for updating s
bestAction = self.computeActionFromValues(s)
self.values[s] = self.computeQValueFromValues(s, bestAction)
for p in self.predecessors[s]:
currentValue = self.values[p]
bestAction = self.computeActionFromValues(p)
highestQValue = self.computeQValueFromValues(p, bestAction)
diff = abs(currentValue - highestQValue)
if diff > self.theta:
self.queue.update(p, -diff)