Welcome to the Large Language Models section of the AI Engineering Academy! This module provides a comprehensive understanding of LLMs and their practical applications in AI engineering.
Model/Directory | Description & Contents |
---|---|
Axolotl | Framework for fine-tuning language models |
Gemma | Google's latest LLM implementation |
- finetune-gemma.ipynb - gemma-sft.py - Gemma_finetuning_notebook.ipynb |
Fine-tuning notebooks and scripts |
LLama2 | Meta's open-source LLM |
- generate_response_stream.py - Llama2_finetuning_notebook.ipynb - Llama_2_Fine_Tuning_using_QLora.ipynb |
Implementation and fine-tuning guides |
Llama3 | Upcoming Meta LLM experiments |
- Llama3_finetuning_notebook.ipynb |
Initial fine-tuning experiments |
LlamaFactory | LLM training and deployment framework |
LLMArchitecture/ParameterCount | Technical details of model architectures |
Mistral-7b | Mistral AI's 7B parameter model |
- LLM_evaluation_harness_for_Arc_Easy_and_SST.ipynb - Mistral_Colab_Finetune_ipynb_Colab_Final.ipynb - notebooks_chatml_inference.ipynb - notebooks_DPO_fine_tuning.ipynb - notebooks_SFTTrainer TRL.ipynb - SFT.py |
Comprehensive notebooks for evaluation, fine-tuning, and inference |
Mixtral | Mixtral's mixture-of-experts model |
- Mixtral_fine_tuning.ipynb |
Fine-tuning implementation |
VLM | Visual Language Models |
- Florence2_finetuning_notebook.ipynb - PaliGemma_finetuning_notebook.ipynb |
Implementations for vision-language models |
- Explore implementations of:
- Llama2 (Meta's open-source model)
- Mistral-7b (Efficient 7B parameter model)
- Mixtral (Mixture-of-experts architecture)
- Gemma (Google's latest contribution)
- Llama3 (Upcoming experiments)
- Implementation strategies
- LoRA (Low-Rank Adaptation) approaches
- Advanced optimization methods
- Deep dives into model structures
- Parameter counting methodologies
- Scaling considerations
- Code LLama for programming tasks
- Visual Language Models:
- Florence2
- PaliGemma
- Comprehensive Jupyter notebooks
- Response generation pipelines
- Inference implementation guides
- DPO (Direct Preference Optimization)
- SFT (Supervised Fine-Tuning)
- Evaluation methodologies
We welcome contributions! See our contributing guidelines for more information.
Each subdirectory contains detailed documentation and implementation guides. Check individual README files for specific instructions.
This project is licensed under the MIT License - see the LICENSE file for details.
Made with ❤️ for the AI community