-
Notifications
You must be signed in to change notification settings - Fork 0
/
statisticsMetrics.py
115 lines (100 loc) · 3.18 KB
/
statisticsMetrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3
# -*- encoding: utf-8 -*-
# Copyright (c) 2017 Adler Neves <adlerosn@gmail.com>
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining
# a copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish,
# distribute, sublicense, and/or sell copies of the Software, and to
# permit persons to whom the Software is furnished to do so, subject to
# the following conditions:
#
# The above copyright notice and this permission notice shall be
# included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import traceback
def getConfusionMatrixEmptyData():
'''
Model
| X | not X |
Pred Positive | True positive | False positive |
Pred Negative | False positive | True negative |
'''
return {
True: { True: 0, False: 0 },
False: { True: 0, False: 0 }
}
def totalPopulation(cm):
return cm[True][True]+cm[True][False]+cm[False][True]+cm[False][False]
def predicted(cm, conc):
return cm[True][conc]+cm[False][conc]
def condition(cm, cond):
return cm[cond][True]+cm[cond][False]
def readable(cm, s):
s = s.lower()
s = s.split(' ')
if s[0].startswith('t'):
if s[1].startswith('p'):
return cm[True][True]
else:
return cm[False][False]
else:
if s[1].startswith('p'):
return cm[False][True]
else:
return cm[True][False]
def recall(cm):
try:
return readable(cm, 't p') / condition(cm, True)
except:
return None
def missRate(cm):
try:
return readable(cm, 'f n') / condition(cm, True)
except:
return None
def specificity(cm):
try:
return readable(cm, 't n') / condition(cm, False)
except:
return None
def precision(cm):
try:
return readable(cm, 't p') / predicted(cm, True)
except:
return None
def accuracy(cm):
try:
return (readable(cm, 't p') + readable(cm, 't n')) / totalPopulation(cm)
except:
return None
def prevalence(cm):
try:
return condition(cm, True) / totalPopulation(cm)
except:
return None
def f1score(cm):
try:
return 2/(1/recall(cm) + 1/precision(cm))
except:
return None
def getStatistics(cm):
return {
'recall': recall(cm),
'missRate': missRate(cm),
'specificity': specificity(cm),
'precision': precision(cm),
'accuracy': accuracy(cm),
'prevalence': prevalence(cm),
'f1score': f1score(cm),
}