diff --git a/src/Data/Product/Function/Dependent/Propositional.agda b/src/Data/Product/Function/Dependent/Propositional.agda index 4a9359bcd0..4c6f391e2f 100644 --- a/src/Data/Product/Function/Dependent/Propositional.agda +++ b/src/Data/Product/Function/Dependent/Propositional.agda @@ -317,5 +317,5 @@ cong {B = B} {k = leftInverse} I↔J A↩B = ↩⇒↪ (Σ-↩ (↔⇒↩ cong {k = surjection} I↔J A↠B = Σ-↠ (↔⇒↠ I↔J) A↠B cong {k = bijection} I↔J A↔B = Σ-↔ I↔J A↔B -cong′ : ∀ {k} → (∀ {x} → A x ∼[ k ] B x) → Σ I A ∼[ k ] Σ I B -cong′ = cong (refl _) +congˡ : ∀ {k} → (∀ {x} → A x ∼[ k ] B x) → Σ I A ∼[ k ] Σ I B +congˡ = cong (refl _)