Skip to content

Latest commit

 

History

History
115 lines (89 loc) · 3.93 KB

README.md

File metadata and controls

115 lines (89 loc) · 3.93 KB

ICScure

ICScure (which stands for Informative Custer Size cure) is a package that performs estimation and inference for clustered current status data with informative cluster size using the method proposed by Lam et al. (2021) <DOI: 10.1002/sim.891>.

ICScure relies on the R-packages stats, stabledist, numDeriv, MASS, which is hosted on CRAN.

Installation

ICScure can be installed from github directly:

install.packages("devtools")
library(devtools)
install_github("alexwky/ICScure")

Usage

The package contains 3 functions:

Functions Description
BernsteinPolynomial Calculate the values of a Bernstein polynomial at given time points.
ICDASim Generate a data set according to the simulation studies in Lam et al. (2021) <DOI: 10.1002/sim.891>
Est.ICScure Perform the cluster-weighted GEE or GEE estimation of Lam et al. (2021) <DOI: 10.1002/sim.891>

BernsteinPolynomial

BernsteinPolynomial(t, psi, mint, maxt)

This function evaluate the Bernstein polynomial at given time points t using user-provided coefficients psi and support (mint,maxt).

Example:

t <- seq(1,10,1)
psi <- seq(0.25,1,0.25)
BernsteinPolynomial(t = t, psi = psi, mint = 0, maxt = 5)
# 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

ICDASim

ICDASim(seed = NA, n, beta00, beta10, beta20, rho, gamma, cs)

This function generates a data set according to the simulation studies in Lam et al. (2021) <DOI: 10.1002/sim.8910>.

Example:

data <- ICDASim(seed = 1942, n = 100, beta00 = 0.5, beta10 = -1, beta20 = 1, cs = 40, rho = 0.5, gamma = 0.5)
head(data)

#   family        Ci delta x1         x2
# 1      1 4.0000000     0  0  0.5042357
# 2      1 2.2748313     1  0  1.8434784
# 3      1 4.0000000     0  1  0.2093028
# 4      1 0.4409429     0  0 -0.1799730
# 5      1 4.0000000     1  0  0.5579359
# 6      1 1.4709212     0  0  0.4700130

Est.ICScure

Est.ICScure(data, rho, degree,
            weighting = TRUE, t.min = 0, t.max = NA, reltol = 10^-6, maxit = 1000, calSE = TRUE)

This function performs the cluster-weighted GEE or GEE estimation of Lam et al. (2021) <DOI: 10.1002/sim.8910>

data is a n x (p+3) matrix, where n is the sample size and p is the number of covariates. The first column consists of cluster indices, the second column consists of the observation time, the third column consists of the event indicator, and the fourth to the last columns consist of the covariates (not including the intercept). The set of covariates can be empty. The format of data is as follow:

Cluster Index Observation Time Event Indicator 1st covariate 2nd covariate ... pth covariate
1 3.7322 1 1 0.0888 ... 1
1 4.0000 1 0 -0.4965 ... 0

Example:

Dataset <- ICDASim(seed = 1942, n = 100, beta00 = 0.5, beta10 = -1, beta20 = 1, cs = 40, rho = 0.5, gamma = 0.5)
Result <- Est.ICScure(data = Dataset, rho = 0.5, degree = 3, weighting = TRUE)
Result

# $degree
# [1] 3
#
# $psi
# [1] 0.9917128 0.9955245 1.0000000
#
# $beta
# [1]  0.7091996 -1.0196841  0.9260482
#
# $betaSE
# [1] 0.13000664 0.11749335 0.07599541
#
# $iteration
# [1] 44
#
# $covergence
# [1] "TRUE"

Help

Details about the package can be found in the user manual:

?ICScure

Contact

Wong Kin Yau, Alex <kin-yau.wong@polyu.edu.hk>

Reference

Lam, K. F., Lee, C. Y., Wong, K. Y., & Bandyopadhyay, D. (2021). Marginal analysis of current status data with informative cluster size using a class of semiparametric transformation cure models. Statistics in Medicine [online], DOI:10.1002/sim.8910