Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Render All Black During Training #32

Open
liuyifan22 opened this issue Jul 16, 2024 · 0 comments
Open

Render All Black During Training #32

liuyifan22 opened this issue Jul 16, 2024 · 0 comments

Comments

@liuyifan22
Copy link

Hello! Thanks for your inspiring work! I am a beginner in this field and want to learn from your work.

When training with the given instruction:
python launch.py --config configs/test.yaml --train --gpu 0 system.prompt_processor.prompt="A boy with a beanie wearing a hoodie and joggers"
I found that all the renders in "save" dir are mere black, no figure or colourful gaussians seems to appear.
image

I also noticed that I've got 0 total parametres, maybe that is the problem.
image

I doubt that there is something wrong with my configuration or paths to SMPL or Texture-structure-joint, but I can't figure it out.
here is my config:

name: "bennie-boy"
tag: "${rmspace:${system.prompt_processor.prompt},_}"
exp_root_dir: "/home/zsj/lyf/HumanGaussian/experiments"
seed: 0
 
data_type: "random-camera-datamodule"
data:
  batch_size: 8
  eval_camera_distance: 2.0
  camera_distance_range: [1.5, 2.0]
  light_sample_strategy: "dreamfusion3dgs"
  height: 1024
  width: 1024
  # resolution_milestones: [600]
  eval_height: 1024
  eval_width: 1024
  elevation_range: [-30, 30]

  enable_near_head_poses: true
  head_offset: 0.65
  head_camera_distance_range: [0.4, 0.6]
  head_prob: 0.25
  head_start_step: 1200
  head_end_step: 3600
  head_azimuth_range: [0, 180]

  enable_near_back_poses: true
  back_offset: 0.65
  back_camera_distance_range: [0.6, 0.8]
  back_prob: 0.20
  back_start_step: 1200
  back_end_step: 3600
  back_azimuth_range: [-180, 0]

system_type: "gaussiandreamer-system"
system:
  radius: ${data.eval_camera_distance}
  texture_structure_joint: true
  smplx_path: /data1/human_dataset/smplx #"/path/to/the/downloaded/smplx_models" # I gave the folder
  disable_hand_densification: false
  pts_num: 100000
  densify_prune_start_step: 300
  densify_prune_end_step: 2100
  densify_prune_interval: 300
  size_threshold: 20
  max_grad: 0.0002
  gender: 'neutral'
  prune_only_start_step: 2400
  prune_only_end_step: 3300
  prune_only_interval: 300
  prune_size_threshold: 0.008
  apose: true
  bg_white: false

  prompt_processor_type: "texture-structure-prompt-processor"
  prompt_processor:
    use_perp_neg: false
    pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-base"
    negative_prompt: "shadow, dark face, colorful hands, eyeglass, glasses, (deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, sketch, cartoon, drawing, anime:1.4), text, close up, cropped, out of frame, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck"
    prompt: "???"

  guidance_type: "dual-branch-guidance"
  guidance:
    pretrained_model_name_or_path: "stabilityai/stable-diffusion-2-base"
    model_key: "/data1/human_dataset/texture_structure_joint/unet" #"/path/to/pretrained/texture-structure_joint_model"
    vae_key: "stabilityai/sd-vae-ft-mse"
    guidance_scale: 7.5
    weighting_strategy: sds
    min_step_percent: 0.02
    max_step_percent: 0.98
    grad_clip: [0,1.5,2.0,1000]
    lw_depth: 0.5
    guidance_rescale: 0.75
    original_size: 1024
    target_size: 1024
    use_anpg: true
    enable_memory_efficient_attention: true
    grad_clip_pixel: true
    grad_clip_threshold: 1.0

  loggers:
    wandb:
      enable: false
      project: 'threestudio'
      name: None

  loss:
    lambda_sds: 1.
    lambda_sparsity: 1.
    lambda_opaque: 0.0
  optimizer:
    name: Adam
    args:
      lr: 0.001
      betas: [0.9, 0.99]
      eps: 1.e-15

trainer:
  max_steps: 3600
  log_every_n_steps: 1
  num_sanity_val_steps: 0
  val_check_interval: 100
  enable_progress_bar: true
  precision: 16-mixed

checkpoint:
  save_last: true # save at each validation time
  save_top_k: -1
  every_n_train_steps: ${trainer.max_steps}

Would you be so kind to help me out? Thanks!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant