forked from sven--/Software-Foundations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ProofObjects.v
907 lines (721 loc) · 26.3 KB
/
ProofObjects.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
(** * ProofObjects: Working with Explicit Evidence in Coq *)
Require Export MoreLogic.
(* ##################################################### *)
(** We have seen that Coq has mechanisms both for _programming_,
using inductive data types (like [nat] or [list]) and functions
over these types, and for _proving_ properties of these programs,
using inductive propositions (like [ev] or [eq]), implication, and
universal quantification. So far, we have treated these mechanisms
as if they were quite separate, and for many purposes this is
a good way to think. But we have also seen hints that Coq's programming and
proving facilities are closely related. For example, the
keyword [Inductive] is used to declare both data types and
propositions, and [->] is used both to describe the type of
functions on data and logical implication. This is not just a
syntactic accident! In fact, programs and proofs in Coq are almost
the same thing. In this chapter we will study how this works.
We have already seen the fundamental idea: provability in Coq is
represented by concrete _evidence_. When we construct the proof
of a basic proposition, we are actually building a tree of evidence,
which can be thought of as a data structure. If the proposition
is an implication like [A -> B], then its proof will be an
evidence _transformer_: a recipe for converting evidence for
A into evidence for B. So at a fundamental level, proofs are simply
programs that manipulate evidence.
*)
(**
Q. If evidence is data, what are propositions themselves?
A. They are types!
Look again at the formal definition of the [beautiful] property. *)
Print beautiful.
(* ==>
Inductive beautiful : nat -> Prop :=
b_0 : beautiful 0
| b_3 : beautiful 3
| b_5 : beautiful 5
| b_sum : forall n m : nat, beautiful n -> beautiful m -> beautiful (n + m)
*)
(** *** *)
(** The trick is to introduce an alternative pronunciation of "[:]".
Instead of "has type," we can also say "is a proof of." For
example, the second line in the definition of [beautiful] declares
that [b_0 : beautiful 0]. Instead of "[b_0] has type
[beautiful 0]," we can say that "[b_0] is a proof of [beautiful 0]."
Similarly for [b_3] and [b_5]. *)
(** *** *)
(** This pun between types and propositions (between [:] as "has type"
and [:] as "is a proof of" or "is evidence for") is called the
_Curry-Howard correspondence_. It proposes a deep connection
between the world of logic and the world of computation.
<<
propositions ~ types
proofs ~ data values
>>
Many useful insights follow from this connection. To begin with, it
gives us a natural interpretation of the type of [b_sum] constructor: *)
Check b_sum.
(* ===> b_sum : forall n m,
beautiful n ->
beautiful m ->
beautiful (n+m) *)
(** This can be read "[b_sum] is a constructor that takes four
arguments -- two numbers, [n] and [m], and two pieces of evidence,
for the propositions [beautiful n] and [beautiful m], respectively --
and yields evidence for the proposition [beautiful (n+m)]." *)
(** Now let's look again at a previous proof involving [beautiful]. *)
Theorem eight_is_beautiful: beautiful 8.
Proof.
apply b_sum with (n := 3) (m := 5).
apply b_3.
apply b_5. Qed.
(** Just as with ordinary data values and functions, we can use the [Print]
command to see the _proof object_ that results from this proof script. *)
Print eight_is_beautiful.
(* ===> eight_is_beautiful = b_sum 3 5 b_3 b_5
: beautiful 8 *)
(** In view of this, we might wonder whether we can write such
an expression ourselves. Indeed, we can: *)
Check (b_sum 3 5 b_3 b_5).
(* ===> beautiful (3 + 5) *)
Theorem b_11 : beautiful 11.
Proof. apply b_sum with (n:=8) (m:=3).
apply eight_is_beautiful.
apply b_3. Qed.
Check (b_sum 8 3 eight_is_beautiful b_3).
Check b_11.
(** The expression [b_sum 3 5 b_3 b_5] can be thought of as
instantiating the parameterized constructor [b_sum] with the
specific arguments [3] [5] and the corresponding proof objects for
its premises [beautiful 3] and [beautiful 5] (Coq is smart enough
to figure out that 3+5=8). Alternatively, we can think of [b_sum]
as a primitive "evidence constructor" that, when applied to two
particular numbers, wants to be further applied to evidence that
those two numbers are beautiful; its type,
forall n m, beautiful n -> beautiful m -> beautiful (n+m),
expresses this functionality, in the same way that the polymorphic
type [forall X, list X] in the previous chapter expressed the fact
that the constructor [nil] can be thought of as a function from
types to empty lists with elements of that type. *)
(** This gives us an alternative way to write the proof that [8] is
beautiful: *)
Theorem eight_is_beautiful': beautiful 8.
Proof.
apply (b_sum 3 5 b_3 b_5).
Qed.
(** Notice that we're using [apply] here in a new way: instead of just
supplying the _name_ of a hypothesis or previously proved theorem
whose type matches the current goal, we are supplying an
_expression_ that directly builds evidence with the required
type. *)
(* ##################################################### *)
(** ** Proof Scripts and Proof Objects *)
(** These proof objects lie at the core of how Coq operates.
When Coq is following a proof script, what is happening internally
is that it is gradually constructing a proof object -- a term
whose type is the proposition being proved. The tactics between
the [Proof] command and the [Qed] instruct Coq how to build up a
term of the required type. To see this process in action, let's
use the [Show Proof] command to display the current state of the
proof tree at various points in the following tactic proof. *)
Theorem eight_is_beautiful'': beautiful 8.
Proof.
Show Proof.
apply b_sum with (n:=3) (m:=5).
Show Proof.
apply b_3.
Show Proof.
apply b_5.
Show Proof.
Qed.
(** At any given moment, Coq has constructed a term with some
"holes" (indicated by [?1], [?2], and so on), and it knows what
type of evidence is needed at each hole. *)
(**
Each of the holes corresponds to a subgoal, and the proof is
finished when there are no more subgoals. At this point, the
[Theorem] command gives a name to the evidence we've built and
stores it in the global context. *)
(** Tactic proofs are useful and convenient, but they are not
essential: in principle, we can always construct the required
evidence by hand, as shown above. Then we can use [Definition]
(rather than [Theorem]) to give a global name directly to a
piece of evidence. *)
Definition eight_is_beautiful''' : beautiful 8 :=
b_sum 3 5 b_3 b_5.
(** All these different ways of building the proof lead to exactly the
same evidence being saved in the global environment. *)
Print eight_is_beautiful.
(* ===> eight_is_beautiful = b_sum 3 5 b_3 b_5 : beautiful 8 *)
Print eight_is_beautiful'.
(* ===> eight_is_beautiful' = b_sum 3 5 b_3 b_5 : beautiful 8 *)
Print eight_is_beautiful''.
(* ===> eight_is_beautiful'' = b_sum 3 5 b_3 b_5 : beautiful 8 *)
Print eight_is_beautiful'''.
(* ===> eight_is_beautiful''' = b_sum 3 5 b_3 b_5 : beautiful 8 *)
Theorem eighteen_is_beautiful : beautiful 18.
Proof.
apply (b_sum 13 5).
apply (b_sum 8 5).
apply (b_sum 5 3).
apply b_5.
apply b_3.
apply b_5.
apply b_5.
Qed.
Theorem eighteen_is_beautiful' : beautiful 18.
Proof.
apply (b_sum 3 15 b_3 (b_sum 10 5 (b_sum 5 5 b_5 b_5) b_5)).
Qed.
Definition eighteen_is_beautiful'' : beautiful 18 :=
(b_sum 3 15 b_3 (b_sum 3 12 b_3 (b_sum 3 9 b_3 (b_sum 3 6 b_3 (b_sum 3 3 b_3 b_3))))).
Print eighteen_is_beautiful.
Print eighteen_is_beautiful'.
Print eighteen_is_beautiful''.
(** **** Exercise: 1 star (six_is_beautiful) *)
(** Give a tactic proof and a proof object showing that [6] is [beautiful]. *)
Theorem six_is_beautiful :
beautiful 6.
Proof.
apply (b_sum 3 3); constructor.
Qed.
Definition six_is_beautiful' : beautiful 6 :=
b_sum 3 3 b_3 b_3.
(** [] *)
(** **** Exercise: 1 star (nine_is_beautiful) *)
(** Give a tactic proof and a proof object showing that [9] is [beautiful]. *)
Theorem nine_is_beautiful :
beautiful 9.
Proof.
apply (b_sum 6 3).
apply six_is_beautiful'.
constructor.
Qed.
Definition nine_is_beautiful' : beautiful 9 :=
(b_sum 6 3 six_is_beautiful b_3).
(* (b_sum 6 3 six_is_beautiful' b_3). *)
(** [] *)
(* ##################################################### *)
(** ** Quantification, Implications and Functions *)
(** In Coq's computational universe (where we've mostly been living
until this chapter), there are two sorts of values with arrows in
their types: _constructors_ introduced by [Inductive]-ly defined
data types, and _functions_.
Similarly, in Coq's logical universe, there are two ways of giving
evidence for an implication: constructors introduced by
[Inductive]-ly defined propositions, and... functions!
For example, consider this statement: *)
Theorem b_plus3: forall n, beautiful n -> beautiful (3+n).
Proof.
intros n H.
apply b_sum.
apply b_3.
apply H.
Qed.
(** What is the proof object corresponding to [b_plus3]?
We're looking for an expression whose _type_ is [forall n,
beautiful n -> beautiful (3+n)] -- that is, a _function_ that
takes two arguments (one number and a piece of evidence) and
returns a piece of evidence! Here it is: *)
Theorem my_1 : forall n, forall _ : beautiful n, beautiful (3+n).
Proof with eauto. intros. apply (b_sum 3 n b_3 H). Qed.
Theorem my_2 : forall n, beautiful n -> beautiful (3+n).
Proof with eauto. intros. apply (b_sum 3 n b_3 H). Qed.
Definition my_3 : forall n, beautiful n -> beautiful (3+n) :=
fun (n : nat) => fun (H : beautiful n) =>
b_sum 3 n b_3 H.
Definition my_4 : forall n, forall _ : beautiful n, beautiful (3+n) :=
fun (n : nat) => fun (H : beautiful n) =>
b_sum 3 n b_3 H.
Definition my_5 (n : nat) (H : beautiful n) :=
b_sum 3 n b_3 H.
Print my_1.
Print my_2.
Print my_3.
Print my_4.
Print my_5.
Parameter F : nat -> Set .
Theorem t : forall x:nat , F (1+x) . admit. Qed.
Definition t':= fun x:nat => F (1+x).
Definition t'':= forall x:nat, F (1 + x).
Definition t'''(x:nat) := F(1+x).
Set Printing Universe.
Print t.
(* t = t_admitted *)
(* : forall x : nat, F (1 + x) *)
(* Argument scope is [nat_scope] *)
Print t'.
(* t' = fun x : nat => F (1 + x) *)
(* : nat -> Set *)
Print t''.
(* t'' = forall x : nat, F (1 + x) *)
(* : Set *)
Print t'''.
(* t''' = fun x : nat => F (1 + x) *)
(* : nat -> Set *)
(* Argument scope is [nat_scope] *)
Check t 1.
(* t 1 *)
(* : F (1 + 1) *)
Check t' 1.
(* t' 1 *)
(* : Set *)
(* Check t'' 1. *)
Check t''' 1.
Definition x := fun x:nat => nat.
Definition y := forall x:nat, Set.
Check x:y.
Definition ab_ := fun x:nat => 5.
Definition ab := fun x:nat => nat.
Definition ab' := forall x:nat, nat.
Definition ab'' := forall x:nat, Set.
Print ab_.
(* ab_ = fun _ : nat => 5 *)
(* : nat -> nat *)
(* Argument scope is [nat_scope] *)
Print ab.
(* ab = fun _ : nat => nat *)
(* : nat -> Set *)
(* Argument scope is [nat_scope] *)
Print ab'.
(* ab' = nat -> nat *)
(* : Set *)
Print ab''.
(* ab'' = nat -> Set *)
(* : Type *)
Check ab_:ab'.
Check ab:ab''.
Check forall _:nat, nat.
Check nat -> nat.
Check _:nat -> nat.
Definition aa := fun x:nat => 5.
(* Definition aa' := forall x:nat, 5. *)
Check fun x:nat => 5.
(* Check forall x:nat, 5. *)
Check let x := True in x.
Check let x := 5 in x.
(* https://coq.inria.fr/refman/Reference-Manual006.html *)
(* 4.2-lam *)
(* fun's type : forall? *)
Definition b_plus3' : forall n, beautiful n -> beautiful (3+n) :=
fun (n : nat) => fun (H : beautiful n) =>
b_sum 3 n b_3 H.
Check b_plus3'.
(* ===> b_plus3' : forall n : nat, beautiful n -> beautiful (3+n) *)
(** Recall that [fun n => blah] means "the function that, given [n],
yields [blah]." Another equivalent way to write this definition is: *)
Definition b_plus3'' (n : nat) (H : beautiful n) : beautiful (3+n) :=
b_sum 3 n b_3 H.
Check b_plus3''.
(* b_plus3'' *)
(* : forall n : nat, beautiful n -> beautiful (3 + n) *)
(** When we view the proposition being proved by [b_plus3] as a function type,
one aspect of it may seem a little unusual. The second argument's
type, [beautiful n], mentions the _value_ of the first argument, [n].
While such _dependent types_ are not commonly found in programming
languages, even functional ones like ML or Haskell, they can
be useful there too.
Notice that both implication ([->]) and quantification ([forall])
correspond to functions on evidence. In fact, they are really the
same thing: [->] is just a shorthand for a degenerate use of
[forall] where there is no dependency, i.e., no need to give a name
to the type on the LHS of the arrow. *)
(** For example, consider this proposition: *)
Definition beautiful_plus3 : Prop :=
forall n, forall (E : beautiful n), beautiful (n+3).
(** A proof term inhabiting this proposition would be a function
with two arguments: a number [n] and some evidence [E] that [n] is
beautiful. But the name [E] for this evidence is not used in the
rest of the statement of [funny_prop1], so it's a bit silly to
bother making up a name for it. We could write it like this
instead, using the dummy identifier [_] in place of a real
name: *)
Definition beautiful_plus3' : Prop :=
forall n, forall (_ : beautiful n), beautiful (n+3).
(** Or, equivalently, we can write it in more familiar notation: *)
Definition beautiful_plus3'' : Prop :=
forall n, beautiful n -> beautiful (3+n).
Check (b_plus3'' 5).
(* Check (beautiful_plus3 5). *)
Print beautiful_plus3.
Print beautiful_plus3'.
Print beautiful_plus3''.
Theorem bp3 : forall n, forall (_ : beautiful n), beautiful (n+3).
Proof.
intros. apply b_sum; auto. constructor.
Qed.
(* bp3 = *)
(* fun (n : nat) (H : beautiful n) => b_sum n 3 H b_3 *)
(* : forall n : nat, beautiful n -> beautiful (n + 3) *)
Print beautiful_plus3'.
Check b_plus3':beautiful_plus3''.
(* changed n+3 in beautiful_plus3'' to 3+n *)
(* Argument scopes are [nat_scope _] *)
(** In general, "[P -> Q]" is just syntactic sugar for
"[forall (_:P), Q]". *)
(** **** Exercise: 2 stars b_times2 *)
(** Give a proof object corresponding to the theorem [b_times2] from Prop.v *)
Require Import Omega.
Lemma mult_to_add : forall n, 2*n = n+n.
Proof. intros. omega. Qed.
Theorem b_times2'_thm: forall n, beautiful n -> beautiful (2*n).
Proof.
intros.
rewrite mult_to_add.
apply (b_sum n n H H).
(*
intros.
replace (2*n) with (n+n).
apply (b_sum n n H H).
omega.
*)
Qed.
Definition b_times2'_: forall n, beautiful n -> beautiful (n+n) :=
fun (n : nat) => fun (E : beautiful n) => (b_sum n n E E).
Definition b_times2': forall n, beautiful n -> beautiful (2*n) :=
fun (n : nat) => fun (E : beautiful n) => (b_times2 n E).
Definition b_times2'__: forall n, forall (E : beautiful n), beautiful (2*n) :=
fun (n : nat) => fun (EE : beautiful n) => (b_times2 n EE).
(** [] *)
(** **** Exercise: 2 stars, optional (gorgeous_plus13_po) *)
(** Give a proof object corresponding to the theorem [gorgeous_plus13] from Prop.v *)
Definition gorgeous_plus13_po: forall n, gorgeous n -> gorgeous (13+n):=
fun (n : nat) => fun (E : gorgeous n) =>
(g_plus3 (10+n) (g_plus5 (5+n) (g_plus5 n E))).
(** [] *)
(** It is particularly revealing to look at proof objects involving the
logical connectives that we defined with inductive propositions in Logic.v. *)
Theorem and_example :
(beautiful 0) /\ (beautiful 3).
Proof.
apply conj.
(* Case "left". *) apply b_0.
(* Case "right". *) apply b_3. Qed.
(** Let's take a look at the proof object for the above theorem. *)
Print and_example.
(* ===> conj (beautiful 0) (beautiful 3) b_0 b_3
: beautiful 0 /\ beautiful 3 *)
(** Note that the proof is of the form
conj (beautiful 0) (beautiful 3)
(...pf of beautiful 3...) (...pf of beautiful 3...)
as you'd expect, given the type of [conj]. *)
(** **** Exercise: 1 star, optional (case_proof_objects) *)
(** The [Case] tactics were commented out in the proof of
[and_example] to avoid cluttering the proof object. What would
you guess the proof object will look like if we uncomment them?
Try it and see. *)
(** [] *)
Theorem and_example' :
(beautiful 0) /\ (beautiful 3).
Proof.
apply conj.
Case "left". apply b_0.
Case "right". apply b_3. Qed.
(*
conj (beautiful 0) (beautiful 3) b_0 b_3
: beautiful 0 /\ beautiful 3
conj (beautiful 0) (beautiful 3) (let Case := "left" in b_0)
(let Case := "right" in b_3)
: beautiful 0 /\ beautiful 3
*)
Theorem and_commut : forall P Q : Prop,
P /\ Q -> Q /\ P.
Proof.
intros P Q H.
inversion H as [HP HQ].
split.
(* Case "left". *) apply HQ.
(* Case "right". *) apply HP. Qed.
(** Once again, we have commented out the [Case] tactics to make the
proof object for this theorem easier to understand. It is still
a little complicated, but after performing some simple reduction
steps, we can see that all that is really happening is taking apart
a record containing evidence for [P] and [Q] and rebuilding it in the
opposite order: *)
Print and_commut.
(* ===>
and_commut =
fun (P Q : Prop) (H : P /\ Q) =>
(fun H0 : Q /\ P => H0)
match H with
| conj HP HQ => (fun (HP0 : P) (HQ0 : Q) => conj Q P HQ0 HP0) HP HQ
end
: forall P Q : Prop, P /\ Q -> Q /\ P *)
(** After simplifying some direct application of [fun] expressions to arguments,
we get: *)
(* ===>
and_commut =
fun (P Q : Prop) (H : P /\ Q) =>
match H with
| conj HP HQ => conj Q P HQ HP
end
: forall P Q : Prop, P /\ Q -> Q /\ P *)
(** **** Exercise: 2 stars, optional (conj_fact) *)
(** Construct a proof object demonstrating the following proposition. *)
Definition and_commut_def : forall P Q : Prop, P /\ Q -> Q /\ P :=
fun (P Q : Prop) (H : P /\ Q) =>
(fun H0 : Q /\ P => H0)
match H with
| conj HP HQ => (fun (HP0 : P) (HQ0 : Q) => conj Q P HQ0 HP0) HP HQ
end
.
Definition and_commut_def' : forall P Q : Prop, P /\ Q -> Q /\ P :=
fun (P Q : Prop) (H : P /\ Q) =>
match H with
| conj HP HQ => conj Q P HQ HP
end
.
Definition conj_fact : forall P Q R, P /\ Q -> Q /\ R -> P /\ R :=
fun (P Q R : Prop) (H1 : P /\ Q) (H2 : Q /\ R) =>
match H1 with
| conj H1P H1Q =>
match H2 with
| conj H2Q H2R => conj P R H1P H2R
end
end
.
(** [] *)
(** **** Exercise: 2 stars, advanced, optional (beautiful_iff_gorgeous) *)
(** We have seen that the families of propositions [beautiful] and
[gorgeous] actually characterize the same set of numbers.
Prove that [beautiful n <-> gorgeous n] for all [n]. Just for
fun, write your proof as an explicit proof object, rather than
using tactics. (_Hint_: if you make use of previously defined
theorems, you should only need a single line!) *)
Definition beautiful_iff_gorgeous :
forall n, beautiful n <-> gorgeous n :=
fun (n : nat) => conj
((beautiful n) -> (gorgeous n))
((gorgeous n) -> (beautiful n))
(beautiful__gorgeous n) (gorgeous__beautiful n).
(** [] *)
(** **** Exercise: 2 stars, optional (or_commut'') *)
(** Try to write down an explicit proof object for [or_commut] (without
using [Print] to peek at the ones we already defined!). *)
(*
Theorem or_commut'' : forall P Q : Prop, P \/ Q -> Q \/ P.
Proof.
intros.
inversion H. right. auto. left. auto.
Qed.
Print or_commut''.
*)
Definition or_commut'' : forall P Q : Prop, P \/ Q -> Q \/ P :=
(*
fun (P Q : Prop) (H : P \/ Q) =>
(fun H0 : Q \/ P => H0)
match H with
| or_introl H0 => (fun H1 : P => or_intror Q P H1) H0
| or_intror H0 => (fun H1 : Q => or_introl Q P H1) H0
end .
*)
fun (P Q : Prop) (H : P \/ Q) =>
match H with
| or_introl HP => or_intror Q P HP
(* (fun H : P => or_intror Q P H) HP *)
| or_intror HQ => or_introl Q P HQ
(* (fun H : Q => or_introl Q P H) HQ *)
end
.
(* FILL IN HERE *)
(** [] *)
(** Recall that we model an existential for a property as a pair consisting of
a witness value and a proof that the witness obeys that property.
We can choose to construct the proof explicitly.
For example, consider this existentially quantified proposition: *)
Check ex.
(*
Inductive ex (X : Type) (P : X -> Prop) : Prop :=
ex_intro : forall witness : X, P witness -> exists x, P x
ex
: forall X : Type, (X -> Prop) -> Prop
*)
Definition some_nat_is_even : Prop :=
ex _ ev.
(** To prove this proposition, we need to choose a particular number
as witness -- say, 4 -- and give some evidence that that number is
even. *)
Definition snie__ : some_nat_is_even :=
ex_intro _ ev 0 ev_0.
Definition snie_ : some_nat_is_even :=
ex_intro _ ev 2 (ev_SS 0 ev_0).
Definition snie : some_nat_is_even :=
ex_intro _ ev 4 (ev_SS 2 (ev_SS 0 ev_0)).
(** **** Exercise: 2 stars, optional (ex_beautiful_Sn) *)
(** Complete the definition of the following proof object: *)
Theorem pp : ex _ (fun n => beautiful (S n)).
Proof. exists 2. apply b_3. Qed.
(* exists n : nat, beautiful (S n)*)
Definition p : ex _ (fun n => beautiful (S n)) :=
ex_intro _ (fun n => beautiful (S n)) 2 b_3
.
(** [] *)
(* ##################################################### *)
(** ** Giving Explicit Arguments to Lemmas and Hypotheses *)
(** Even when we are using tactic-based proof, it can be very useful to
understand the underlying functional nature of implications and quantification.
For example, it is often convenient to [apply] or [rewrite]
using a lemma or hypothesis with one or more quantifiers or
assumptions already instantiated in order to direct what
happens. For example: *)
Check plus_comm.
(* ==>
plus_comm
: forall n m : nat, n + m = m + n *)
Lemma plus_comm_r : forall a b c, c + (b + a) = c + (a + b).
Proof.
intros a b c.
(* rewrite plus_comm. *)
(* rewrites in the first possible spot; not what we want *)
rewrite (plus_comm b a). (* directs rewriting to the right spot *)
reflexivity. Qed.
(** In this case, giving just one argument would be sufficient. *)
Lemma plus_comm_r' : forall a b c, c + (b + a) = c + (a + b).
Proof.
intros a b c.
rewrite (plus_comm b).
reflexivity. Qed.
(** Arguments must be given in order, but wildcards (_)
may be used to skip arguments that Coq can infer. *)
Lemma plus_comm_r'' : forall a b c, c + (b + a) = c + (a + b).
Proof.
intros a b c.
rewrite (plus_comm _ a).
reflexivity. Qed.
(** The author of a lemma can choose to declare easily inferable arguments
to be implicit, just as with functions and constructors.
The [with] clauses we've already seen is really just a way of
specifying selected arguments by name rather than position: *)
Lemma plus_comm_r''' : forall a b c, c + (b + a) = c + (a + b).
Proof.
intros a b c.
rewrite plus_comm with (n := b).
reflexivity. Qed.
(** **** Exercise: 2 stars (trans_eq_example_redux) *)
(** Redo the proof of the following theorem (from MoreCoq.v) using
an [apply] of [trans_eq] but _not_ using a [with] clause. *)
Example trans_eq_example' : forall (a b c d e f : nat),
[a;b] = [c;d] ->
[c;d] = [e;f] ->
[a;b] = [e;f].
Proof.
intros.
inversion H...
inversion H0...
auto.
Qed.
(** [] *)
(* ##################################################### *)
(** ** Programming with Tactics (Optional) *)
(** If we can build proofs with explicit terms rather than
tactics, you may be wondering if we can build programs using
tactics rather than explicit terms. Sure! *)
Definition add1 : nat -> nat.
intro n.
Show Proof.
apply S.
Show Proof.
apply n.
Show Proof.
Defined.
Print add1.
(* ==>
add1 = fun n : nat => S n
: nat -> nat
*)
Eval compute in add1 2.
(* ==> 3 : nat *)
(*
Definition len : forall X : Type, list X -> nat.
intros X l.
*)
Definition len {X : Type} : list X -> nat.
intros l.
Show Proof.
destruct l eqn:T.
Show Proof.
apply 0.
Show Proof.
apply S.
apply (length l0).
Defined.
Theorem len_well_defined :
forall X : Type, forall l : (list X),
len l = length l.
Proof with eauto.
intros.
induction l...
Qed.
(* QQQQQQQQQQQQQQQQQQQ fix tactic? *)
Fixpoint fib (n : nat) : nat.
destruct n.
Show Proof.
-
apply 0.
-
(* remember (S n) as m. *)
Show Proof.
(* induction n. *)
inversion n.
(* destruct n. *)
Show Proof.
*
apply 1.
*
Show Proof.
apply (fun x y => x + y).
Show Proof.
apply (fib n).
Show Proof.
apply (fib H).
Show Proof.
Defined.
Print fib.
Definition fib_0 : fib 0 = 0. auto. Defined.
Definition fib_1 : fib 1 = 1. auto. Defined.
Definition fib_2 : fib 2 = 1. auto. Defined.
Definition fib_3 : fib 3 = 2. auto. Defined.
Definition fib_4 : fib 4 = 3. auto. Defined.
Definition fib_5 : fib 5 = 5. auto. Defined.
Theorem fib_well_def : forall n, fib (n+2) = fib (n+1) + fib (n).
Proof.
intros.
rewrite <- plus_comm.
induction n.
- auto.
-
rewrite plus_comm with (n:=(fib (S n +1))).
SearchPattern (_ + _ = _ + _ -> _ = _).
SearchPattern (_ = _ -> _ + _ = _ + _).
assert(H : forall a b c, a = b -> c + a = c + b) by auto.
remember (fib (S n)) as x.
remember (fib (S n + 1)) as y.
simpl.
rewrite Heqx.
rewrite <- plus_assoc.
apply H.
rewrite Heqy.
assert(H2 : S n + 1 = 2 + n) by omega.
rewrite H2.
rewrite IHn.
assert(H3 : forall a b c, a = b + c -> a = c + b).
intros.
rewrite H0. omega.
apply H3.
apply H.
SearchPattern(_ + _ = _ + _).
rewrite plus_comm.
auto.
(* symmetry. *)
(* simpl. *)
(* apply plus_reg_l with (p:=(fib (S n))). *)
(* apply plus_reg_l with (p:=(fib (S n))) (n:= (fib n) + (fib (S n))) (m:=(fib (S n + 1))). *)
Qed.
(** Notice that we terminate the [Definition] with a [.] rather than with
[:=] followed by a term. This tells Coq to enter proof scripting mode
to build an object of type [nat -> nat]. Also, we terminate the proof
with [Defined] rather than [Qed]; this makes the definition _transparent_
so that it can be used in computation like a normally-defined function.
This feature is mainly useful for writing functions with dependent types,
which we won't explore much further in this book.
But it does illustrate the uniformity and orthogonality of the basic ideas in Coq. *)
(* $Date: 2014-06-05 07:22:21 -0400 (Thu, 05 Jun 2014) $ *)