Skip to content

Latest commit

 

History

History
67 lines (45 loc) · 1.22 KB

README.md

File metadata and controls

67 lines (45 loc) · 1.22 KB

An Unofficial Implementation for Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

  • Document Classification

Dataset

  • dcard + ptt 共 20 萬篇文章
  • 這個 repo 為各種 pretrained model 的分類任務結果

Environement

  • Python 3.7
  • pip install -r requirements.txt

training

1. Train gensim word2vec

  • see word2vec/train.py

2. 更改資料集路徑、欄位等

  • see dataset.py

3. set config

  • See config.py

4. train bert model

  • default RoBERTa
  • python main.py --model=bert

5. train distilled LSTM

  • set config in config.py distil_hparams
  • python main.py --model=bert

結果

Roberta + LSTM 3 layers

  • Roberta 3 epoch acc. : 90 %
  • Distill 3 epoch LSTM :
'data': {
    'maxlen': 350
},
'lstm_model': {
    'freeze': False,
    'embed_size': 250,
    'hid_size': 256,
    'num_layers': 2,
    'dropout': 0.3,
    'with_attn': False,
    'num_classes': 16,
},
'bert_model': {
    'num_classes': 16,
    'ckpt': 'logs/roberta/version_6/epoch=1.ckpt'
}

Reference