-
Notifications
You must be signed in to change notification settings - Fork 117
/
datasets.py
executable file
·406 lines (297 loc) · 15 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
# Data loading based on:
# https://github.com/NVIDIA/flownet2-pytorch
# https://github.com/princeton-vl/RAFT
# https://github.com/haofeixu/gmflow
import numpy as np
import torch
import torch.utils.data as data
import os
import random
from glob import glob
import os.path as osp
from utils import frame_utils
from dataloader.flow.transforms import FlowAugmentor, SparseFlowAugmentor
class FlowDataset(data.Dataset):
def __init__(self, aug_params=None, sparse=False,
load_occlusion=False,
vkitti2=False,
):
self.augmentor = None
self.sparse = sparse
if aug_params is not None:
if sparse:
self.augmentor = SparseFlowAugmentor(**aug_params)
else:
self.augmentor = FlowAugmentor(**aug_params)
self.is_test = False
self.init_seed = False
self.flow_list = []
self.image_list = []
self.extra_info = []
self.vkitti2 = vkitti2
self.load_occlusion = load_occlusion
self.occ_list = []
def __getitem__(self, index):
if self.is_test:
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
if len(np.array(img1).shape) == 2: # gray image
img1 = img1.convert('RGB')
img2 = img2.convert('RGB')
img1 = np.array(img1).astype(np.uint8)[..., :3]
img2 = np.array(img2).astype(np.uint8)[..., :3]
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
return img1, img2, self.extra_info[index]
if not self.init_seed:
worker_info = torch.utils.data.get_worker_info()
if worker_info is not None:
torch.manual_seed(worker_info.id)
np.random.seed(worker_info.id)
random.seed(worker_info.id)
self.init_seed = True
index = index % len(self.image_list)
valid = None
if self.sparse:
if self.vkitti2:
flow, valid = frame_utils.read_vkitti2_flow(self.flow_list[index])
else:
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) # [H, W, 2], [H, W]
else:
flow = frame_utils.read_gen(self.flow_list[index])
if self.load_occlusion:
occlusion = frame_utils.read_gen(self.occ_list[index]) # [H, W], 0 or 255 (occluded)
img1 = frame_utils.read_gen(self.image_list[index][0])
img2 = frame_utils.read_gen(self.image_list[index][1])
flow = np.array(flow).astype(np.float32)
img1 = np.array(img1).astype(np.uint8)
img2 = np.array(img2).astype(np.uint8)
if self.load_occlusion:
occlusion = np.array(occlusion).astype(np.float32)
# grayscale images
if len(img1.shape) == 2:
img1 = np.tile(img1[..., None], (1, 1, 3))
img2 = np.tile(img2[..., None], (1, 1, 3))
else:
img1 = img1[..., :3]
img2 = img2[..., :3]
if self.augmentor is not None:
if self.sparse:
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
else:
if self.load_occlusion:
img1, img2, flow, occlusion = self.augmentor(img1, img2, flow, occlusion=occlusion)
else:
img1, img2, flow = self.augmentor(img1, img2, flow)
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
if self.load_occlusion:
occlusion = torch.from_numpy(occlusion) # [H, W]
if valid is not None:
valid = torch.from_numpy(valid)
else:
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
# mask out occluded pixels
if self.load_occlusion:
# non-occlusion: 0, occlusion: 255
noc_valid = 1 - occlusion / 255. # 0 or 1
return img1, img2, flow, valid.float(), noc_valid.float()
return img1, img2, flow, valid.float()
def __rmul__(self, v):
self.flow_list = v * self.flow_list
self.image_list = v * self.image_list
return self
def __len__(self):
return len(self.image_list)
class MpiSintel(FlowDataset):
def __init__(self, aug_params=None, split='training',
root='datasets/Sintel',
dstype='clean',
load_occlusion=False,
):
super(MpiSintel, self).__init__(aug_params,
load_occlusion=load_occlusion,
)
flow_root = osp.join(root, split, 'flow')
image_root = osp.join(root, split, dstype)
if load_occlusion:
occlusion_root = osp.join(root, split, 'occlusions')
if split == 'test':
self.is_test = True
for scene in os.listdir(image_root):
image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
for i in range(len(image_list) - 1):
self.image_list += [[image_list[i], image_list[i + 1]]]
self.extra_info += [(scene, i)] # scene and frame_id
if split != 'test':
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
if load_occlusion:
self.occ_list += sorted(glob(osp.join(occlusion_root, scene, '*.png')))
class FlyingChairs(FlowDataset):
def __init__(self, aug_params=None, split='train',
root='datasets/FlyingChairs_release/data',
):
super(FlyingChairs, self).__init__(aug_params)
images = sorted(glob(osp.join(root, '*.ppm')))
flows = sorted(glob(osp.join(root, '*.flo')))
assert (len(images) // 2 == len(flows))
split_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'chairs_split.txt')
split_list = np.loadtxt(split_file, dtype=np.int32)
for i in range(len(flows)):
xid = split_list[i]
if (split == 'training' and xid == 1) or (split == 'validation' and xid == 2):
self.flow_list += [flows[i]]
self.image_list += [[images[2 * i], images[2 * i + 1]]]
class FlyingThings3D(FlowDataset):
def __init__(self, aug_params=None,
root='datasets/FlyingThings3D',
dstype='frames_cleanpass',
test_set=False,
validate_subset=True,
):
super(FlyingThings3D, self).__init__(aug_params)
img_dir = root
flow_dir = root
for cam in ['left']:
for direction in ['into_future', 'into_past']:
if test_set:
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TEST/*/*')))
else:
image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TRAIN/*/*')))
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
if test_set:
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TEST/*/*')))
else:
flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TRAIN/*/*')))
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
for idir, fdir in zip(image_dirs, flow_dirs):
images = sorted(glob(osp.join(idir, '*.png')))
flows = sorted(glob(osp.join(fdir, '*.pfm')))
for i in range(len(flows) - 1):
if direction == 'into_future':
self.image_list += [[images[i], images[i + 1]]]
self.flow_list += [flows[i]]
elif direction == 'into_past':
self.image_list += [[images[i + 1], images[i]]]
self.flow_list += [flows[i + 1]]
# validate on 1024 subset of test set for fast speed
if test_set and validate_subset:
num_val_samples = 1024
all_test_samples = len(self.image_list) # 7866
stride = all_test_samples // num_val_samples
remove = all_test_samples % num_val_samples
# uniformly sample a subset
self.image_list = self.image_list[:-remove][::stride]
self.flow_list = self.flow_list[:-remove][::stride]
class VKITTI2(FlowDataset):
def __init__(self, aug_params=None,
root='datasets/VKITTI2',
):
super(VKITTI2, self).__init__(aug_params, sparse=True, vkitti2=True,
)
data_dir = root
scenes = ['Scene01', 'Scene02', 'Scene06', 'Scene18', 'Scene20']
for scene in scenes:
scene_dir = os.path.join(data_dir, scene)
types = os.listdir(scene_dir)
for scene_type in types:
type_dir = os.path.join(scene_dir, scene_type)
imgs = sorted(glob(os.path.join(type_dir, 'frames', 'rgb', 'Camera_0', '*.jpg')))
flows_fwd = sorted(glob(os.path.join(type_dir, 'frames', 'forwardFlow', 'Camera_0', '*.png')))
flows_bwd = sorted(glob(os.path.join(type_dir, 'frames', 'backwardFlow', 'Camera_0', '*.png')))
assert len(imgs) == len(flows_fwd) + 1 and len(imgs) == len(flows_bwd) + 1
for i in range(len(imgs) - 1):
# forward
self.image_list += [[imgs[i], imgs[i + 1]]]
self.flow_list += [flows_fwd[i]]
# backward
self.image_list += [[imgs[i + 1], imgs[i]]]
self.flow_list += [flows_bwd[i]]
class KITTI(FlowDataset):
def __init__(self, aug_params=None, split='training',
root='datasets/KITTI',
):
super(KITTI, self).__init__(aug_params, sparse=True,
)
if split == 'testing':
self.is_test = True
root = osp.join(root, split)
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
for img1, img2 in zip(images1, images2):
frame_id = os.path.basename(img1)
self.extra_info += [[frame_id]]
self.image_list += [[img1, img2]]
if split == 'training':
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
class KITTI12(FlowDataset):
def __init__(self, aug_params=None, split='training',
root='datasets/KITTI12'):
super(KITTI12, self).__init__(aug_params, sparse=True)
if split == 'testing':
self.is_test = True
root = osp.join(root, split)
images1 = sorted(glob(osp.join(root, 'colored_0/*_10.png')))
images2 = sorted(glob(osp.join(root, 'colored_0/*_11.png')))
for img1, img2 in zip(images1, images2):
frame_id = os.path.basename(img1)
self.extra_info += [[frame_id]]
self.image_list += [[img1, img2]]
if split == 'training':
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
class HD1K(FlowDataset):
def __init__(self, aug_params=None, root='datasets/HD1K'):
super(HD1K, self).__init__(aug_params, sparse=True)
seq_ix = 0
while 1:
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
if len(flows) == 0:
break
for i in range(len(flows) - 1):
self.flow_list += [flows[i]]
self.image_list += [[images[i], images[i + 1]]]
seq_ix += 1
def build_train_dataset(args):
if args.stage == 'chairs':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
train_dataset = FlyingChairs(aug_params, split='training')
elif args.stage == 'things':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
train_dataset = clean_dataset + final_dataset
elif args.stage == 'vkitti2':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}
vkitti2 = VKITTI2(aug_params) # 42420
train_dataset = vkitti2
elif args.stage == 'sintel':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
things = FlyingThings3D(aug_params, dstype='frames_cleanpass') # 40302
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True}
kitti = KITTI(aug_params=aug_params) # 200
aug_params = {'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True}
hd1k = HD1K(aug_params=aug_params) # 1047
train_dataset = 100 * sintel_clean + 100 * sintel_final + 200 * kitti + 5 * hd1k + things
elif args.stage == 'sintel_ft':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
train_dataset = sintel_clean + 2 * sintel_final
elif args.stage == 'kitti':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
train_dataset = KITTI(aug_params, split='training',
)
elif args.stage == 'kitti_mix':
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
kitti15 = KITTI(aug_params, split='training',
)
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
kitti12 = KITTI12(aug_params, split='training')
train_dataset = 2 * kitti15 + kitti12
else:
raise ValueError(f'stage {args.stage} is not supported')
return train_dataset