-
Notifications
You must be signed in to change notification settings - Fork 11
/
optim.py
193 lines (169 loc) · 7.07 KB
/
optim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import math
import torch
from torch.optim import Optimizer
from torch import Tensor
from typing import List
def adam(params: List[Tensor],
grads: List[Tensor],
exp_avgs: List[Tensor],
exp_avg_sqs: List[Tensor],
max_exp_avg_sqs: List[Tensor],
state_steps: List[int],
amsgrad: bool,
beta1: float,
beta2: float,
lr: float,
weight_decay: float,
eps: float):
r"""Functional API that performs Adam algorithm computation.
See :class:`~torch.optim.Adam` for details.
"""
for i, param in enumerate(params):
grad = grads[i]
if beta1 != 0:
exp_avg = exp_avgs[i]
if beta2 != 0:
exp_avg_sq = exp_avg_sqs[i]
step = state_steps[i]
bias_correction1 = 1 - beta1 ** step
bias_correction2 = 1 - beta2 ** step
if weight_decay != 0:
grad = grad.add(param, alpha=weight_decay)
# Decay the first and second moment running average coefficient
if beta1 != 0:
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
else:
exp_avg = grad
if beta2 != 0:
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
else:
exp_avg_sq = grad * grad
if amsgrad:
# Maintains the maximum of all 2nd moment running avg. till now
torch.maximum(
max_exp_avg_sqs[i], exp_avg_sq, out=max_exp_avg_sqs[i])
# Use the max. for normalizing running avg. of gradient
denom = (
max_exp_avg_sqs[i].sqrt() / math.sqrt(bias_correction2)
).add_(eps)
else:
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
step_size = lr / bias_correction1
param.addcdiv_(exp_avg, denom, value=-step_size)
class Adam(Optimizer):
r"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
The implementation of the L2 penalty follows changes proposed in
`Decoupled Weight Decay Regularization`_.
Args:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
(default: False)
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _Decoupled Weight Decay Regularization:
https://arxiv.org/abs/1711.05101
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError(
"Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError(
"Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError(
"Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay, amsgrad=amsgrad)
super(Adam, self).__init__(params, defaults)
def __setstate__(self, state):
super(Adam, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('amsgrad', False)
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Args:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
with torch.enable_grad():
loss = closure()
for group in self.param_groups:
beta1, beta2 = group['betas']
params_with_grad = []
grads = []
if beta1 != 0:
exp_avgs = []
else:
exp_avgs = None
if beta2 != 0:
exp_avg_sqs = []
else:
exp_avg_sqs = None
max_exp_avg_sqs = []
state_steps = []
for p in group['params']:
if p.grad is not None:
params_with_grad.append(p)
if p.grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
grads.append(p.grad)
state = self.state[p]
# Lazy state initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
if beta1 != 0:
state['exp_avg'] = torch.zeros_like(
p, memory_format=torch.preserve_format)
# Exponential moving average of squared gradient values
if beta2 != 0:
state['exp_avg_sq'] = torch.zeros_like(
p, memory_format=torch.preserve_format)
if group['amsgrad']:
# Maintains max of all exp. moving avg. of sq.
# grad. values
state['max_exp_avg_sq'] = torch.zeros_like(
p, memory_format=torch.preserve_format)
if beta1 != 0:
exp_avgs.append(state['exp_avg'])
if beta2 != 0:
exp_avg_sqs.append(state['exp_avg_sq'])
if group['amsgrad']:
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
# update the steps for each param group update
state['step'] += 1
# record the step after step update
state_steps.append(state['step'])
adam(params_with_grad,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
group['amsgrad'],
beta1,
beta2,
group['lr'],
group['weight_decay'],
group['eps'])
return loss