Inverse estimation, also referred to as the calibration problem, is a classical and well-known problem in regression. In simple terms, it involves the use of an observed value of the response (or specified value of the mean response) to make inference on the corresponding unknown value of an explanatory variable.
A detailed introduction to investr has been published in The R Journal: “investr: An R Package for Inverse Estimation”. You can track development at https://github.com/bgreenwell/investr. To report bugs or issues, contact the main author directly or submit them to https://github.com/bgreenwell/investr/issues.
As of right now, investr
supports (univariate) inverse estimation with
objects of class:
"lm"
- linear models (multiple predictor variables allowed)"glm"
- generalized linear models (multiple predictor variables allowed)"nls"
- nonlinear least-squares models"lme"
- linear mixed-effects models (fit using thenlme
package)
The package is currently listed on CRAN and can easily be installed:
# Install from CRAN
install.packages("investr", dep = TRUE)
# Alternatively, install the development version from GitHub
devtools::install_github("bgreenwell/investr")
The package is also part of the ChemPhys task
view, a collection of R
packages useful for analyzing data from chemistry and physics
experiments. These packages can all be installed at once (including
investr
) using the ctv
package (Zeileis, 2005):
# Install the ChemPhys task view
install.packages("ctv")
ctv::install.views("ChemPhys")
In binomial regression, the estimated lethal dose corresponding to a
specific probability p of death is often referred to as LDp.
invest
obtains an estimate of LDp by inverting the fitted mean
response on the link scale. Similarly, a confidence interval for LDp
can be obtained by inverting a confidence interval for the mean response
on the link scale.
# Load required packages
library(investr)
# Binomial regression
beetle.glm <- glm(cbind(y, n-y) ~ ldose, data = beetle,
family = binomial(link = "cloglog"))
plotFit(beetle.glm, lwd.fit = 2, cex = 1.2, pch = 21, bg = "lightskyblue",
lwd = 2, xlab = "Log dose", ylab = "Probability")
# Median lethal dose
invest(beetle.glm, y0 = 0.5)
#> estimate lower upper
#> 1.778753 1.770211 1.786178
# 90% lethal dose
invest(beetle.glm, y0 = 0.9)
#> estimate lower upper
#> 1.833221 1.825117 1.843068
# 99% lethal dose
invest(beetle.glm, y0 = 0.99)
#> estimate lower upper
#> 1.864669 1.853607 1.879133
To obtain an estimate of the standard error, we can use the Wald method:
invest(beetle.glm, y0 = 0.5, interval = "Wald")
#> estimate lower upper se
#> 1.7787530 1.7709004 1.7866057 0.0040065
# The MASS package function dose.p can be used too
MASS::dose.p(beetle.glm, p = 0.5)
#> Dose SE
#> p = 0.5: 1.778753 0.00400654
Multiple predictor variables are allowed for objects of class lm
and
glm
. For instance, the example from ?MASS::dose.p
can be re-created
as follows:
# Load required packages
library(MASS)
# Data
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm <- data.frame(ldose, numdead, sex, SF)
# Logistic regression
budworm.glm <- glm(SF ~ sex + ldose - 1, family = binomial, data = budworm)
# Using dose.p function from package MASS
dose.p(budworm.glm, cf = c(1, 3), p = 1/4)
#> Dose SE
#> p = 0.25: 2.231265 0.2499089
# Using invest function from package investr
invest(budworm.glm, y0 = 1/4,
interval = "Wald",
x0.name = "ldose",
newdata = data.frame(sex = "F"))
#> estimate lower upper se
#> 2.2312647 1.7414522 2.7210771 0.2499089
The data here contain the actual concentrations of an agrochemical
present in soil samples versus the weight of the plant after three weeks
of growth. These data are stored in the data frame nasturtium
and are
loaded with the package. A simple log-logistic model describes the data
well:
# Log-logistic model for the nasturtium data
nas.nls <- nls(weight ~ theta1/(1 + exp(theta2 + theta3 * log(conc))),
start = list(theta1 = 1000, theta2 = -1, theta3 = 1),
data = nasturtium)
# Plot the fitted model
plotFit(nas.nls, lwd.fit = 2)
Three new replicates of the response (309, 296, 419) at an unknown concentration of interest (x0) are measured. It is desired to estimate x0.
# Inversion method
invest(nas.nls, y0 = c(309, 296, 419), interval = "inversion")
#> estimate lower upper
#> 2.263854 1.772244 2.969355
# Wald method
invest(nas.nls, y0 = c(309, 296, 419), interval = "Wald")
#> estimate lower upper se
#> 2.2638535 1.6888856 2.8388214 0.2847023
The intervals both rely on large sample results and normality. In practice, the bootstrap may be more reliable:
# Bootstrap calibration intervals (may take a few seconds)
boo <- invest(nas.nls, y0 = c(309, 296, 419), interval = "percentile",
nsim = 9999, seed = 101)
boo # print bootstrap summary
#> estimate lower upper se bias
#> 2.2638535 1.7889885 2.9380360 0.2946540 0.0281456
plot(boo) # plot results