forked from gopxl/pixel
-
Notifications
You must be signed in to change notification settings - Fork 0
/
circle.go
341 lines (293 loc) · 10.6 KB
/
circle.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
package pixel
import (
"fmt"
"math"
)
// Circle is a 2D circle. It is defined by two properties:
// - Center vector
// - Radius float64
type Circle struct {
Center Vec
Radius float64
}
// C returns a new Circle with the given radius and center coordinates.
//
// Note that a negative radius is valid.
func C(center Vec, radius float64) Circle {
return Circle{
Center: center,
Radius: radius,
}
}
// String returns the string representation of the Circle.
//
// c := pixel.C(10.1234, pixel.ZV)
// c.String() // returns "Circle(10.12, Vec(0, 0))"
// fmt.Println(c) // Circle(10.12, Vec(0, 0))
func (c Circle) String() string {
return fmt.Sprintf("Circle(%s, %.2f)", c.Center, c.Radius)
}
// Norm returns the Circle in normalized form - this sets the radius to its absolute value.
//
// c := pixel.C(-10, pixel.ZV)
// c.Norm() // returns pixel.Circle{pixel.Vec{0, 0}, 10}
func (c Circle) Norm() Circle {
return Circle{
Center: c.Center,
Radius: math.Abs(c.Radius),
}
}
// Area returns the area of the Circle.
func (c Circle) Area() float64 {
return math.Pi * math.Pow(c.Radius, 2)
}
func (c Circle) Bounds() Rect {
return Rect{
Min: V(c.Center.X-c.Radius, c.Center.Y-c.Radius),
Max: V(c.Center.X+c.Radius, c.Center.Y+c.Radius),
}
}
// Moved returns the Circle moved by the given vector delta.
func (c Circle) Moved(delta Vec) Circle {
return Circle{
Center: c.Center.Add(delta),
Radius: c.Radius,
}
}
// Resized returns the Circle resized by the given delta. The Circles center is use as the anchor.
//
// c := pixel.C(pixel.ZV, 10)
// c.Resized(-5) // returns pixel.Circle{pixel.Vec{0, 0}, 5}
// c.Resized(25) // returns pixel.Circle{pixel.Vec{0, 0}, 35}
func (c Circle) Resized(radiusDelta float64) Circle {
return Circle{
Center: c.Center,
Radius: c.Radius + radiusDelta,
}
}
// Contains checks whether a vector `u` is contained within this Circle (including it's perimeter).
func (c Circle) Contains(u Vec) bool {
toCenter := c.Center.To(u)
return c.Radius >= toCenter.Len()
}
// Formula returns the values of h and k, for the equation of the circle: (x-h)^2 + (y-k)^2 = r^2
// where r is the radius of the circle.
func (c Circle) Formula() (h, k float64) {
return c.Center.X, c.Center.Y
}
// maxCircle will return the larger circle based on the radius.
func maxCircle(c, d Circle) Circle {
if c.Radius < d.Radius {
return d
}
return c
}
// minCircle will return the smaller circle based on the radius.
func minCircle(c, d Circle) Circle {
if c.Radius < d.Radius {
return c
}
return d
}
// Union returns the minimal Circle which covers both `c` and `d`.
func (c Circle) Union(d Circle) Circle {
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
// Get distance between centers
dist := c.Center.To(d.Center).Len()
// If the bigger Circle encompasses the smaller one, we have the result
if dist+smallerC.Radius <= biggerC.Radius {
return biggerC
}
// Calculate radius for encompassing Circle
r := (dist + biggerC.Radius + smallerC.Radius) / 2
// Calculate center for encompassing Circle
theta := .5 + (biggerC.Radius-smallerC.Radius)/(2*dist)
center := Lerp(smallerC.Center, biggerC.Center, theta)
return Circle{
Center: center,
Radius: r,
}
}
// Intersect returns the maximal Circle which is covered by both `c` and `d`.
//
// If `c` and `d` don't overlap, this function returns a zero-sized circle at the centerpoint between the two Circle's
// centers.
func (c Circle) Intersect(d Circle) Circle {
// Check if one of the circles encompasses the other; if so, return that one
biggerC := maxCircle(c.Norm(), d.Norm())
smallerC := minCircle(c.Norm(), d.Norm())
if biggerC.Radius >= biggerC.Center.To(smallerC.Center).Len()+smallerC.Radius {
return biggerC
}
// Calculate the midpoint between the two radii
// Distance between centers
dist := c.Center.To(d.Center).Len()
// Difference between radii
diff := dist - (c.Radius + d.Radius)
// Distance from c.Center to the weighted midpoint
distToMidpoint := c.Radius + 0.5*diff
// Weighted midpoint
center := Lerp(c.Center, d.Center, distToMidpoint/dist)
// No need to calculate radius if the circles do not overlap
if c.Center.To(d.Center).Len() >= c.Radius+d.Radius {
return C(center, 0)
}
radius := c.Center.To(d.Center).Len() - (c.Radius + d.Radius)
return Circle{
Center: center,
Radius: math.Abs(radius),
}
}
// IntersectLine will return the shortest Vec such that if the Circle is moved by the Vec returned, the Line and Rect no
// longer intersect.
func (c Circle) IntersectLine(l Line) Vec {
return l.IntersectCircle(c).Scaled(-1)
}
// IntersectRect returns a minimal required Vector, such that moving the circle by that vector would stop the Circle
// and the Rect intersecting. This function returns a zero-vector if the Circle and Rect do not overlap, and if only
// the perimeters touch.
//
// This function will return a non-zero vector if:
// - The Rect contains the Circle, partially or fully
// - The Circle contains the Rect, partially of fully
func (c Circle) IntersectRect(r Rect) Vec {
// Checks if the c.Center is not in the diagonal quadrants of the rectangle
if (r.Min.X <= c.Center.X && c.Center.X <= r.Max.X) || (r.Min.Y <= c.Center.Y && c.Center.Y <= r.Max.Y) {
// 'grow' the Rect by c.Radius in each orthagonal
grown := Rect{Min: r.Min.Sub(V(c.Radius, c.Radius)), Max: r.Max.Add(V(c.Radius, c.Radius))}
if !grown.Contains(c.Center) {
// c.Center not close enough to overlap, return zero-vector
return ZV
}
// Get minimum distance to travel out of Rect
rToC := r.Center().To(c.Center)
h := c.Radius - math.Abs(rToC.X) + (r.W() / 2)
v := c.Radius - math.Abs(rToC.Y) + (r.H() / 2)
if rToC.X < 0 {
h = -h
}
if rToC.Y < 0 {
v = -v
}
// No intersect
if h == 0 && v == 0 {
return ZV
}
if math.Abs(h) > math.Abs(v) {
// Vertical distance shorter
return V(0, v)
}
return V(h, 0)
} else {
// The center is in the diagonal quadrants
// Helper points to make code below easy to read.
rectTopLeft := V(r.Min.X, r.Max.Y)
rectBottomRight := V(r.Max.X, r.Min.Y)
// Check for overlap.
if !(c.Contains(r.Min) || c.Contains(r.Max) || c.Contains(rectTopLeft) || c.Contains(rectBottomRight)) {
// No overlap.
return ZV
}
var centerToCorner Vec
if c.Center.To(r.Min).Len() <= c.Radius {
// Closest to bottom-left
centerToCorner = c.Center.To(r.Min)
}
if c.Center.To(r.Max).Len() <= c.Radius {
// Closest to top-right
centerToCorner = c.Center.To(r.Max)
}
if c.Center.To(rectTopLeft).Len() <= c.Radius {
// Closest to top-left
centerToCorner = c.Center.To(rectTopLeft)
}
if c.Center.To(rectBottomRight).Len() <= c.Radius {
// Closest to bottom-right
centerToCorner = c.Center.To(rectBottomRight)
}
cornerToCircumferenceLen := c.Radius - centerToCorner.Len()
return centerToCorner.Unit().Scaled(cornerToCircumferenceLen)
}
}
// IntersectionPoints returns all the points where the Circle intersects with the line provided. This can be zero, one or
// two points, depending on the location of the shapes. The points of intersection will be returned in order of
// closest-to-l.A to closest-to-l.B.
func (c Circle) IntersectionPoints(l Line) []Vec {
cContainsA := c.Contains(l.A)
cContainsB := c.Contains(l.B)
// Special case for both endpoint being contained within the circle
if cContainsA && cContainsB {
return []Vec{}
}
// Get closest point on the line to this circles' center
closestToCenter := l.Closest(c.Center)
// If the distance to the closest point is greater than the radius, there are no points of intersection
if closestToCenter.To(c.Center).Len() > c.Radius {
return []Vec{}
}
// If the distance to the closest point is equal to the radius, the line is tangent and the closest point is the
// point at which it touches the circle.
if closestToCenter.To(c.Center).Len() == c.Radius {
return []Vec{closestToCenter}
}
// Special case for endpoint being on the circles' center
if c.Center == l.A || c.Center == l.B {
otherEnd := l.B
if c.Center == l.B {
otherEnd = l.A
}
intersect := c.Center.Add(c.Center.To(otherEnd).Unit().Scaled(c.Radius))
return []Vec{intersect}
}
// This means the distance to the closest point is less than the radius, so there is at least one intersection,
// possibly two.
// If one of the end points exists within the circle, there is only one intersection
if cContainsA || cContainsB {
containedPoint := l.A
otherEnd := l.B
if cContainsB {
containedPoint = l.B
otherEnd = l.A
}
// Use trigonometry to get the length of the line between the contained point and the intersection point.
// The following is used to describe the triangle formed:
// - a is the side between contained point and circle center
// - b is the side between the center and the intersection point (radius)
// - c is the side between the contained point and the intersection point
// The captials of these letters are used as the angles opposite the respective sides.
// a and b are known
a := containedPoint.To(c.Center).Len()
b := c.Radius
// B can be calculated by subtracting the angle of b (to the x-axis) from the angle of c (to the x-axis)
B := containedPoint.To(c.Center).Angle() - containedPoint.To(otherEnd).Angle()
// Using the Sin rule we can get A
A := math.Asin((a * math.Sin(B)) / b)
// Using the rule that there are 180 degrees (or Pi radians) in a triangle, we can now get C
C := math.Pi - A + B
// If C is zero, the line segment is in-line with the center-intersect line.
var c float64
if C == 0 {
c = b - a
} else {
// Using the Sine rule again, we can now get c
c = (a * math.Sin(C)) / math.Sin(A)
}
// Travelling from the contained point to the other end by length of a will provide the intersection point.
return []Vec{
containedPoint.Add(containedPoint.To(otherEnd).Unit().Scaled(c)),
}
}
// Otherwise the endpoints exist outside of the circle, and the line segment intersects in two locations.
// The vector formed by going from the closest point to the center of the circle will be perpendicular to the line;
// this forms a right-angled triangle with the intersection points, with the radius as the hypotenuse.
// Calculate the other triangles' sides' length.
a := math.Sqrt(math.Pow(c.Radius, 2) - math.Pow(closestToCenter.To(c.Center).Len(), 2))
// Travelling in both directions from the closest point by length of a will provide the two intersection points.
first := closestToCenter.Add(closestToCenter.To(l.A).Unit().Scaled(a))
second := closestToCenter.Add(closestToCenter.To(l.B).Unit().Scaled(a))
if first.To(l.A).Len() < second.To(l.A).Len() {
return []Vec{first, second}
}
return []Vec{second, first}
}