forked from facebookresearch/LASER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mldoc.sh
executable file
·138 lines (123 loc) · 3.74 KB
/
mldoc.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#!/bin/bash
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
# LASER Language-Agnostic SEntence Representations
# is a toolkit to calculate multilingual sentence embeddings
# and to use them for document classification, bitext filtering
# and mining
#
# --------------------------------------------------------
#
# bash script to calculate sentence embeddings for the MLDoc corpus,
# train and evaluate the classifier
if [ -z ${LASER+x} ] ; then
echo "Please set the environment variable 'LASER'"
exit
fi
# general config
mldir="MLDoc" # raw texts of MLdoc
edir="embed" # normalized texts and embeddings
languages=('en' 'de' 'es' 'fr' 'it' 'ja' 'ru' 'zh')
# encoder
model_dir="${LASER}/models"
encoder="${model_dir}/bilstm.93langs.2018-12-26.pt"
bpe_codes="${model_dir}/93langs.fcodes"
edir="embed"
###################################################################
#
# Extract files with labels and texts from the MLdoc corpus
#
###################################################################
ExtractMLdoc () {
ifname=$1
ofname=$2
lang=$3
if [ ! -f ${ifname}.${lang} ] ; then
echo "Please install the MLDoc corpus first"
exit
fi
if [ ! -f ${ofname}.lbl.${lang} ] ; then
echo " - extract labels from ${ifname}.${lang}"
cut -d' ' -f1 ${ifname}.${lang} \
| sed -e 's/C/0/' -e 's/E/1/' -e 's/G/2/' -e 's/M/3/' \
> ${ofname}.lbl.${lang}
fi
if [ ! -f ${ofname}.txt.${lang} ] ; then
echo " - extract texts from ${ifname}.${lang}"
# remove text which is not useful for classification
cut -d' ' -f2 ${ifname}.${lang} \
| sed -e 's/ Co \./ Co./g' -e s'/ Inc \. / Inc. /g' \
-e 's/([cC]) Reuters Limited 199[0-9]\.//g' \
> ${ofname}.txt.${lang}
fi
}
###################################################################
#
# Create all files
#
###################################################################
# create output directories
for d in ${edir} ; do
mkdir -p ${d}
done
# Embed all data
echo -e "\nExtracting MLDoc data"
#ExtractMLdoc ${mldir}/mldoc.train1000 ${edir}/mldoc.train1000 "en"
for part in "mldoc.train1000" "mldoc.dev" "mldoc.test" ; do
for l in ${languages[@]} ; do
ExtractMLdoc ${mldir}/${part} ${edir}/${part} ${l}
done
done
MECAB="${LASER}/tools-external/mecab"
export LD_LIBRARY_PATH="${MECAB}/lib:${LD_LIBRARY_PATH}"
python3 mldoc.py --data_dir ${edir} --lang ${languages[@]} --bpe_codes ${bpe_codes} --encoder ${encoder}
# MLDoc classifier parameters
nb_cl=4
N=500
lr=0.001
wd=0.0
nhid="10 8"
drop=0.2
seed=1
bsize=12
echo -e "\nTraining MLDoc classifier (log files in ${edir})"
#for ltrn in "en" ; do
for ltrn in ${languages[@]} ; do
ldev=${ltrn}
lf="${edir}/mldoc.${ltrn}-${ldev}.log"
echo " - train on ${ltrn}, dev on ${ldev}"
if [ ! -f ${lf} ] ; then
python3 ${LASER}/source/sent_classif.py \
--gpu 0 --base-dir ${edir} \
--train mldoc.train1000.enc.${ltrn} \
--train-labels mldoc.train1000.lbl.${ltrn} \
--dev mldoc.dev.enc.${ldev} \
--dev-labels mldoc.dev.lbl.${ldev} \
--test mldoc.test.enc \
--test-labels mldoc.test.lbl \
--nb-classes ${nb_cl} \
--nhid ${nhid[@]} --dropout ${drop} --bsize ${bsize} \
--seed ${seed} --lr ${lr} --wdecay ${wd} --nepoch ${N} \
--lang ${languages[@]} \
> ${lf}
fi
done
# display results
echo -e "\nAccuracy matrix:"
echo -n "Train "
for l1 in ${languages[@]} ; do
printf " %2s " ${l1}
done
echo ""
for l1 in ${languages[@]} ; do
lf="${edir}/mldoc.${l1}-${l1}.log"
echo -n " ${l1}: "
for l2 in ${languages[@]} ; do
grep "Test lang ${l2}" $lf | sed -e 's/%//' | awk '{printf(" %5.2f", $10)}'
done
echo ""
done