(keras-gpu) C:\Users> ml train --help
Using TensorFlow backend.
Usage: ml train [OPTIONS]
This subcommand trains a classifier.
Options:
-m, --transfer-learning-model [DenseNet121|DenseNet169|DenseNet201|InceptionResNetV2|InceptionV3|NASNet|NASNetLarge|NASNetMobile|MobileNet|MobileNetV2|ResNet50|ResNet101|ResNet152|ResNet50V2|ResNet101V2|ResNet152V2|VGG19|Xception]
Sets the transfer learning model.
--number-trainable-layers INTEGER
Sets the number trainable layers.
--input-dimension INTEGER Sets the size of input dimension.
--dense-size INTEGER Sets the dense size.
--dropout FLOAT RANGE Sets the dropout value.
--weights [imagenet] Sets the database with which the weights are
to be set (pre-trained transfer learning
model).
--continue Continue learning with given model file.
-e, --epochs INTEGER Sets the number of epochs.
--batch-size INTEGER Sets the batch size.
-a, --activation-function [elu|exponential|relu|selu|sigmoid|softmax|softplus|softsign|tanh]
Sets the activation function.
--loss-function [mean_squared_error|categorical_crossentropy]
Sets the loss function.
-o, --optimizer [sgd|rmsprop|adagrad|adadelta|adam|adamax|nadam]
Sets the optimizer (sgd, rmsprop, adagrad,
adadelta, adam, adamax, nadam).
-l, --learning-rate FLOAT Sets the learning rate value.
--learning-rate-drop FLOAT RANGE
Sets the learning rate drop value.
--learning-rate-epochs-drop INTEGER
Sets the number of epochs after which the
learning rate should decrease.
--momentum FLOAT RANGE Sets the momentum value.
--decay FLOAT RANGE Sets the decay value.
--nesterov Switches on the nesterov mode.
--metrics [accuracy] Sets the metrics.
--validation-split FLOAT RANGE Sets the validation split.
--environment-path PATH Sets the environment path (used for example
by --model-file, --config-file,
--evaluation-path or --data-path).
--model-file TEXT Sets the model file where it should be saved
or loaded. [required]
--data-path TEXT The data path the model should learn from.
[required]
--model-source TEXT Sets the source model if you want to
continue learning from.
--use-train-val Use separate training and validation folder.
--add-transfer-learning-name Add the name of the transfer learning model.
-v, --verbose Switches the script to verbose mode.
--log-verbose Switches the script to verbose mode when
logging.
-d, --debug Switches the script to debug mode.
-y, --yes Skip demands.
--service Execute the given command as service.
--http Execute the given command as http service.
-r, --render-device [AUTO|CPU|CPU1|CPU2|CPU3|GPU|GPU1|GPU2|GPU3|PARALLEL]
Specifies the device on which the
calculation is to be performed. [default:
AUTO]
--plaidml-keras-backend Skip demands.
--help Show this message and exit.
- ...
- Björn Hempel bjoern@hempel.li - Initial work - https://github.com/bjoern-hempel
This tutorial is licensed under the MIT License - see the LICENSE.md file for details
Have fun! :)