-
Notifications
You must be signed in to change notification settings - Fork 1
/
Chapter_3.html
1026 lines (975 loc) · 76.5 KB
/
Chapter_3.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>Chapter 3 Practical. Preparing data | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi</title>
<meta name="description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="generator" content="bookdown 0.39 and GitBook 2.6.7" />
<meta property="og:title" content="Chapter 3 Practical. Preparing data | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi" />
<meta property="og:type" content="book" />
<meta property="og:image" content="/img/cover.png" />
<meta property="og:description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="github-repo" content="bradduthie/stats" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Chapter 3 Practical. Preparing data | Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi" />
<meta name="twitter:description" content="This is an introductory statistics textbook for students in the biological and environmental sciences with examples using jamovi statistical software." />
<meta name="twitter:image" content="/img/cover.png" />
<meta name="author" content="A. Bradley Duthie" />
<meta name="date" content="2024-08-06" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="Chapter_2.html"/>
<link rel="next" href="Chapter_4.html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/fuse.js@6.4.6/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { font-weight: bold; } /* Alert */
code span.an { font-style: italic; } /* Annotation */
code span.cf { font-weight: bold; } /* ControlFlow */
code span.co { font-style: italic; } /* Comment */
code span.cv { font-style: italic; } /* CommentVar */
code span.do { font-style: italic; } /* Documentation */
code span.dt { text-decoration: underline; } /* DataType */
code span.er { font-weight: bold; } /* Error */
code span.in { font-style: italic; } /* Information */
code span.kw { font-weight: bold; } /* Keyword */
code span.pp { font-weight: bold; } /* Preprocessor */
code span.wa { font-style: italic; } /* Warning */
</style>
<style type="text/css">
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">Statistics with jamovi</a></li>
<li class="divider"></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html"><i class="fa fa-check"></i>Preface</a>
<ul>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#structure"><i class="fa fa-check"></i>How this book is structured</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#datasets"><i class="fa fa-check"></i>Datasets used in this book</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#acknowledgements"><i class="fa fa-check"></i>Acknowledgements</a></li>
<li class="chapter" data-level="" data-path="index.html"><a href="index.html#author"><i class="fa fa-check"></i>About the author</a></li>
</ul></li>
<li class="chapter" data-level="1" data-path="Chapter_1.html"><a href="Chapter_1.html"><i class="fa fa-check"></i><b>1</b> Background mathematics</a>
<ul>
<li class="chapter" data-level="1.1" data-path="Chapter_1.html"><a href="Chapter_1.html#numbers-and-operations"><i class="fa fa-check"></i><b>1.1</b> Numbers and operations</a></li>
<li class="chapter" data-level="1.2" data-path="Chapter_1.html"><a href="Chapter_1.html#logarithms"><i class="fa fa-check"></i><b>1.2</b> Logarithms</a></li>
<li class="chapter" data-level="1.3" data-path="Chapter_1.html"><a href="Chapter_1.html#order-of-operations"><i class="fa fa-check"></i><b>1.3</b> Order of operations</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="Chapter_2.html"><a href="Chapter_2.html"><i class="fa fa-check"></i><b>2</b> Data organisation</a>
<ul>
<li class="chapter" data-level="2.1" data-path="Chapter_2.html"><a href="Chapter_2.html#tidy-data"><i class="fa fa-check"></i><b>2.1</b> Tidy data</a></li>
<li class="chapter" data-level="2.2" data-path="Chapter_2.html"><a href="Chapter_2.html#data-files"><i class="fa fa-check"></i><b>2.2</b> Data files</a></li>
<li class="chapter" data-level="2.3" data-path="Chapter_2.html"><a href="Chapter_2.html#managing-data-files"><i class="fa fa-check"></i><b>2.3</b> Managing data files</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="Chapter_3.html"><a href="Chapter_3.html"><i class="fa fa-check"></i><b>3</b> <em>Practical</em>. Preparing data</a>
<ul>
<li class="chapter" data-level="3.1" data-path="Chapter_3.html"><a href="Chapter_3.html#transferring-data-to-a-spreadsheet"><i class="fa fa-check"></i><b>3.1</b> Transferring data to a spreadsheet</a></li>
<li class="chapter" data-level="3.2" data-path="Chapter_3.html"><a href="Chapter_3.html#making-spreadsheet-data-tidy"><i class="fa fa-check"></i><b>3.2</b> Making spreadsheet data tidy</a></li>
<li class="chapter" data-level="3.3" data-path="Chapter_3.html"><a href="Chapter_3.html#making-data-tidy-again"><i class="fa fa-check"></i><b>3.3</b> Making data tidy again</a></li>
<li class="chapter" data-level="3.4" data-path="Chapter_3.html"><a href="Chapter_3.html#tidy-data-and-spreadsheet-calculations"><i class="fa fa-check"></i><b>3.4</b> Tidy data and spreadsheet calculations</a></li>
<li class="chapter" data-level="3.5" data-path="Chapter_3.html"><a href="Chapter_3.html#summary"><i class="fa fa-check"></i><b>3.5</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="Chapter_4.html"><a href="Chapter_4.html"><i class="fa fa-check"></i><b>4</b> Populations and samples</a></li>
<li class="chapter" data-level="5" data-path="Chapter_5.html"><a href="Chapter_5.html"><i class="fa fa-check"></i><b>5</b> Types of variables</a></li>
<li class="chapter" data-level="6" data-path="Chapter_6.html"><a href="Chapter_6.html"><i class="fa fa-check"></i><b>6</b> Accuracy, precision, and units</a>
<ul>
<li class="chapter" data-level="6.1" data-path="Chapter_6.html"><a href="Chapter_6.html#accuracy"><i class="fa fa-check"></i><b>6.1</b> Accuracy</a></li>
<li class="chapter" data-level="6.2" data-path="Chapter_6.html"><a href="Chapter_6.html#precision"><i class="fa fa-check"></i><b>6.2</b> Precision</a></li>
<li class="chapter" data-level="6.3" data-path="Chapter_6.html"><a href="Chapter_6.html#systems-of-units"><i class="fa fa-check"></i><b>6.3</b> Systems of units</a></li>
</ul></li>
<li class="chapter" data-level="7" data-path="Chapter_7.html"><a href="Chapter_7.html"><i class="fa fa-check"></i><b>7</b> Uncertainty propagation</a>
<ul>
<li class="chapter" data-level="7.1" data-path="Chapter_7.html"><a href="Chapter_7.html#adding-or-subtracting-errors"><i class="fa fa-check"></i><b>7.1</b> Adding or subtracting errors</a></li>
<li class="chapter" data-level="7.2" data-path="Chapter_7.html"><a href="Chapter_7.html#multiplying-or-dividing-errors"><i class="fa fa-check"></i><b>7.2</b> Multiplying or dividing errors</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="Chapter_8.html"><a href="Chapter_8.html"><i class="fa fa-check"></i><b>8</b> <em>Practical</em>. Introduction to jamovi</a>
<ul>
<li class="chapter" data-level="8.1" data-path="Chapter_8.html"><a href="Chapter_8.html#summary_statistics_02"><i class="fa fa-check"></i><b>8.1</b> Summary statistics</a></li>
<li class="chapter" data-level="8.2" data-path="Chapter_8.html"><a href="Chapter_8.html#transforming_variables_02"><i class="fa fa-check"></i><b>8.2</b> Transforming variables</a></li>
<li class="chapter" data-level="8.3" data-path="Chapter_8.html"><a href="Chapter_8.html#computing_variables_02"><i class="fa fa-check"></i><b>8.3</b> Computing variables</a></li>
<li class="chapter" data-level="8.4" data-path="Chapter_8.html"><a href="Chapter_8.html#summary-1"><i class="fa fa-check"></i><b>8.4</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="Chapter_9.html"><a href="Chapter_9.html"><i class="fa fa-check"></i><b>9</b> Decimal places, significant figures, and rounding</a>
<ul>
<li class="chapter" data-level="9.1" data-path="Chapter_9.html"><a href="Chapter_9.html#decimal-places-and-significant-figures"><i class="fa fa-check"></i><b>9.1</b> Decimal places and significant figures</a></li>
<li class="chapter" data-level="9.2" data-path="Chapter_9.html"><a href="Chapter_9.html#rounding"><i class="fa fa-check"></i><b>9.2</b> Rounding</a></li>
</ul></li>
<li class="chapter" data-level="10" data-path="Chapter_10.html"><a href="Chapter_10.html"><i class="fa fa-check"></i><b>10</b> Graphs</a>
<ul>
<li class="chapter" data-level="10.1" data-path="Chapter_10.html"><a href="Chapter_10.html#histograms"><i class="fa fa-check"></i><b>10.1</b> Histograms</a></li>
<li class="chapter" data-level="10.2" data-path="Chapter_10.html"><a href="Chapter_10.html#barplots-and-pie-charts"><i class="fa fa-check"></i><b>10.2</b> Barplots and pie charts</a></li>
<li class="chapter" data-level="10.3" data-path="Chapter_10.html"><a href="Chapter_10.html#box-whisker-plots"><i class="fa fa-check"></i><b>10.3</b> Box-whisker plots</a></li>
</ul></li>
<li class="chapter" data-level="11" data-path="Chapter_11.html"><a href="Chapter_11.html"><i class="fa fa-check"></i><b>11</b> Measures of central tendency</a>
<ul>
<li class="chapter" data-level="11.1" data-path="Chapter_11.html"><a href="Chapter_11.html#the-mean"><i class="fa fa-check"></i><b>11.1</b> The mean</a></li>
<li class="chapter" data-level="11.2" data-path="Chapter_11.html"><a href="Chapter_11.html#the-mode"><i class="fa fa-check"></i><b>11.2</b> The mode</a></li>
<li class="chapter" data-level="11.3" data-path="Chapter_11.html"><a href="Chapter_11.html#the-median-and-quantiles"><i class="fa fa-check"></i><b>11.3</b> The median and quantiles</a></li>
</ul></li>
<li class="chapter" data-level="12" data-path="Chapter_12.html"><a href="Chapter_12.html"><i class="fa fa-check"></i><b>12</b> Measures of spread</a>
<ul>
<li class="chapter" data-level="12.1" data-path="Chapter_12.html"><a href="Chapter_12.html#the-range"><i class="fa fa-check"></i><b>12.1</b> The range</a></li>
<li class="chapter" data-level="12.2" data-path="Chapter_12.html"><a href="Chapter_12.html#the-inter-quartile-range"><i class="fa fa-check"></i><b>12.2</b> The inter-quartile range</a></li>
<li class="chapter" data-level="12.3" data-path="Chapter_12.html"><a href="Chapter_12.html#the-variance"><i class="fa fa-check"></i><b>12.3</b> The variance</a></li>
<li class="chapter" data-level="12.4" data-path="Chapter_12.html"><a href="Chapter_12.html#the-standard-deviation"><i class="fa fa-check"></i><b>12.4</b> The standard deviation</a></li>
<li class="chapter" data-level="12.5" data-path="Chapter_12.html"><a href="Chapter_12.html#the-coefficient-of-variation"><i class="fa fa-check"></i><b>12.5</b> The coefficient of variation</a></li>
<li class="chapter" data-level="12.6" data-path="Chapter_12.html"><a href="Chapter_12.html#the-standard-error"><i class="fa fa-check"></i><b>12.6</b> The standard error</a></li>
</ul></li>
<li class="chapter" data-level="13" data-path="Chapter_13.html"><a href="Chapter_13.html"><i class="fa fa-check"></i><b>13</b> Skew and kurtosis</a>
<ul>
<li class="chapter" data-level="13.1" data-path="Chapter_13.html"><a href="Chapter_13.html#skew"><i class="fa fa-check"></i><b>13.1</b> Skew</a></li>
<li class="chapter" data-level="13.2" data-path="Chapter_13.html"><a href="Chapter_13.html#kurtosis"><i class="fa fa-check"></i><b>13.2</b> Kurtosis</a></li>
<li class="chapter" data-level="13.3" data-path="Chapter_13.html"><a href="Chapter_13.html#moments"><i class="fa fa-check"></i><b>13.3</b> Moments</a></li>
</ul></li>
<li class="chapter" data-level="14" data-path="Chapter_14.html"><a href="Chapter_14.html"><i class="fa fa-check"></i><b>14</b> <em>Practical</em>. Plotting and statistical summaries in jamovi</a>
<ul>
<li class="chapter" data-level="14.1" data-path="Chapter_14.html"><a href="Chapter_14.html#reorganise-the-dataset-into-a-tidy-format"><i class="fa fa-check"></i><b>14.1</b> Reorganise the dataset into a tidy format</a></li>
<li class="chapter" data-level="14.2" data-path="Chapter_14.html"><a href="Chapter_14.html#histograms-and-box-whisker-plots"><i class="fa fa-check"></i><b>14.2</b> Histograms and box-whisker plots</a></li>
<li class="chapter" data-level="14.3" data-path="Chapter_14.html"><a href="Chapter_14.html#calculate-summary-statistics"><i class="fa fa-check"></i><b>14.3</b> Calculate summary statistics</a></li>
<li class="chapter" data-level="14.4" data-path="Chapter_14.html"><a href="Chapter_14.html#reporting-decimals-and-significant-figures"><i class="fa fa-check"></i><b>14.4</b> Reporting decimals and significant figures</a></li>
<li class="chapter" data-level="14.5" data-path="Chapter_14.html"><a href="Chapter_14.html#comparing-across-sites"><i class="fa fa-check"></i><b>14.5</b> Comparing across sites</a></li>
</ul></li>
<li class="chapter" data-level="15" data-path="Chapter_15.html"><a href="Chapter_15.html"><i class="fa fa-check"></i><b>15</b> Introduction to probability models</a>
<ul>
<li class="chapter" data-level="15.1" data-path="Chapter_15.html"><a href="Chapter_15.html#instructive-example"><i class="fa fa-check"></i><b>15.1</b> Instructive example</a></li>
<li class="chapter" data-level="15.2" data-path="Chapter_15.html"><a href="Chapter_15.html#biological-applications"><i class="fa fa-check"></i><b>15.2</b> Biological applications</a></li>
<li class="chapter" data-level="15.3" data-path="Chapter_15.html"><a href="Chapter_15.html#sampling-with-and-without-replacement"><i class="fa fa-check"></i><b>15.3</b> Sampling with and without replacement</a></li>
<li class="chapter" data-level="15.4" data-path="Chapter_15.html"><a href="Chapter_15.html#probability-distributions"><i class="fa fa-check"></i><b>15.4</b> Probability distributions</a>
<ul>
<li class="chapter" data-level="15.4.1" data-path="Chapter_15.html"><a href="Chapter_15.html#binomial-distribution"><i class="fa fa-check"></i><b>15.4.1</b> Binomial distribution</a></li>
<li class="chapter" data-level="15.4.2" data-path="Chapter_15.html"><a href="Chapter_15.html#poisson-distribution"><i class="fa fa-check"></i><b>15.4.2</b> Poisson distribution</a></li>
<li class="chapter" data-level="15.4.3" data-path="Chapter_15.html"><a href="Chapter_15.html#uniform-distribution"><i class="fa fa-check"></i><b>15.4.3</b> Uniform distribution</a></li>
<li class="chapter" data-level="15.4.4" data-path="Chapter_15.html"><a href="Chapter_15.html#normal-distribution"><i class="fa fa-check"></i><b>15.4.4</b> Normal distribution</a></li>
</ul></li>
<li class="chapter" data-level="15.5" data-path="Chapter_15.html"><a href="Chapter_15.html#summary-2"><i class="fa fa-check"></i><b>15.5</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="16" data-path="Chapter_16.html"><a href="Chapter_16.html"><i class="fa fa-check"></i><b>16</b> Central Limit Theorem</a>
<ul>
<li class="chapter" data-level="16.1" data-path="Chapter_16.html"><a href="Chapter_16.html#the-distribution-of-means-is-normal"><i class="fa fa-check"></i><b>16.1</b> The distribution of means is normal</a></li>
<li class="chapter" data-level="16.2" data-path="Chapter_16.html"><a href="Chapter_16.html#probability-and-z-scores"><i class="fa fa-check"></i><b>16.2</b> Probability and z-scores</a></li>
</ul></li>
<li class="chapter" data-level="17" data-path="Chapter_17.html"><a href="Chapter_17.html"><i class="fa fa-check"></i><b>17</b> <em>Practical</em>. Probability and simulation</a>
<ul>
<li class="chapter" data-level="17.1" data-path="Chapter_17.html"><a href="Chapter_17.html#probabilities-from-a-dataset"><i class="fa fa-check"></i><b>17.1</b> Probabilities from a dataset</a></li>
<li class="chapter" data-level="17.2" data-path="Chapter_17.html"><a href="Chapter_17.html#probabilities-from-a-normal-distribution"><i class="fa fa-check"></i><b>17.2</b> Probabilities from a normal distribution</a></li>
<li class="chapter" data-level="17.3" data-path="Chapter_17.html"><a href="Chapter_17.html#central-limit-theorem"><i class="fa fa-check"></i><b>17.3</b> Central limit theorem</a></li>
</ul></li>
<li class="chapter" data-level="18" data-path="Chapter_18.html"><a href="Chapter_18.html"><i class="fa fa-check"></i><b>18</b> Confidence intervals</a>
<ul>
<li class="chapter" data-level="18.1" data-path="Chapter_18.html"><a href="Chapter_18.html#normal-distribution-cis"><i class="fa fa-check"></i><b>18.1</b> Normal distribution CIs</a></li>
<li class="chapter" data-level="18.2" data-path="Chapter_18.html"><a href="Chapter_18.html#binomial-distribution-cis"><i class="fa fa-check"></i><b>18.2</b> Binomial distribution CIs</a></li>
</ul></li>
<li class="chapter" data-level="19" data-path="Chapter_19.html"><a href="Chapter_19.html"><i class="fa fa-check"></i><b>19</b> The t-interval</a></li>
<li class="chapter" data-level="20" data-path="Chapter_20.html"><a href="Chapter_20.html"><i class="fa fa-check"></i><b>20</b> <em>Practical</em>. z- and t-intervals</a>
<ul>
<li class="chapter" data-level="20.1" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-with-distraction"><i class="fa fa-check"></i><b>20.1</b> Confidence intervals with distrACTION</a></li>
<li class="chapter" data-level="20.2" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-from-z--and-t-scores"><i class="fa fa-check"></i><b>20.2</b> Confidence intervals from z- and t-scores</a></li>
<li class="chapter" data-level="20.3" data-path="Chapter_20.html"><a href="Chapter_20.html#confidence-intervals-for-different-sample-sizes"><i class="fa fa-check"></i><b>20.3</b> Confidence intervals for different sample sizes</a></li>
<li class="chapter" data-level="20.4" data-path="Chapter_20.html"><a href="Chapter_20.html#proportion-confidence-intervals"><i class="fa fa-check"></i><b>20.4</b> Proportion confidence intervals</a></li>
<li class="chapter" data-level="20.5" data-path="Chapter_20.html"><a href="Chapter_20.html#another-proportion-confidence-interval"><i class="fa fa-check"></i><b>20.5</b> Another proportion confidence interval</a></li>
</ul></li>
<li class="chapter" data-level="21" data-path="Chapter_21.html"><a href="Chapter_21.html"><i class="fa fa-check"></i><b>21</b> What is hypothesis testing?</a>
<ul>
<li class="chapter" data-level="21.1" data-path="Chapter_21.html"><a href="Chapter_21.html#how-ridiculous-is-our-hypothesis"><i class="fa fa-check"></i><b>21.1</b> How ridiculous is our hypothesis?</a></li>
<li class="chapter" data-level="21.2" data-path="Chapter_21.html"><a href="Chapter_21.html#statistical-hypothesis-testing"><i class="fa fa-check"></i><b>21.2</b> Statistical hypothesis testing</a></li>
<li class="chapter" data-level="21.3" data-path="Chapter_21.html"><a href="Chapter_21.html#p-values-false-positives-and-power"><i class="fa fa-check"></i><b>21.3</b> P-values, false positives, and power</a></li>
</ul></li>
<li class="chapter" data-level="22" data-path="Chapter_22.html"><a href="Chapter_22.html"><i class="fa fa-check"></i><b>22</b> The t-test</a>
<ul>
<li class="chapter" data-level="22.1" data-path="Chapter_22.html"><a href="Chapter_22.html#one-sample-t-test"><i class="fa fa-check"></i><b>22.1</b> One sample t-test</a></li>
<li class="chapter" data-level="22.2" data-path="Chapter_22.html"><a href="Chapter_22.html#independent-samples-t-test"><i class="fa fa-check"></i><b>22.2</b> Independent samples t-test</a></li>
<li class="chapter" data-level="22.3" data-path="Chapter_22.html"><a href="Chapter_22.html#paired-samples-t-test"><i class="fa fa-check"></i><b>22.3</b> Paired samples t-test</a></li>
<li class="chapter" data-level="22.4" data-path="Chapter_22.html"><a href="Chapter_22.html#assumptions-of-t-tests"><i class="fa fa-check"></i><b>22.4</b> Assumptions of t-tests</a></li>
<li class="chapter" data-level="22.5" data-path="Chapter_22.html"><a href="Chapter_22.html#non-parametric-alternatives"><i class="fa fa-check"></i><b>22.5</b> Non-parametric alternatives</a>
<ul>
<li class="chapter" data-level="22.5.1" data-path="Chapter_22.html"><a href="Chapter_22.html#wilcoxon-test"><i class="fa fa-check"></i><b>22.5.1</b> Wilcoxon test</a></li>
<li class="chapter" data-level="22.5.2" data-path="Chapter_22.html"><a href="Chapter_22.html#mann-whitney-u-test"><i class="fa fa-check"></i><b>22.5.2</b> Mann-Whitney U test</a></li>
</ul></li>
<li class="chapter" data-level="22.6" data-path="Chapter_22.html"><a href="Chapter_22.html#summary-3"><i class="fa fa-check"></i><b>22.6</b> Summary</a></li>
</ul></li>
<li class="chapter" data-level="23" data-path="Chapter_23.html"><a href="Chapter_23.html"><i class="fa fa-check"></i><b>23</b> <em>Practical</em>. Hypothesis testing and t-tests</a>
<ul>
<li class="chapter" data-level="23.1" data-path="Chapter_23.html"><a href="Chapter_23.html#one-sample-t-test-1"><i class="fa fa-check"></i><b>23.1</b> One sample t-test</a></li>
<li class="chapter" data-level="23.2" data-path="Chapter_23.html"><a href="Chapter_23.html#paired-t-test"><i class="fa fa-check"></i><b>23.2</b> Paired t-test</a></li>
<li class="chapter" data-level="23.3" data-path="Chapter_23.html"><a href="Chapter_23.html#wilcoxon-test-1"><i class="fa fa-check"></i><b>23.3</b> Wilcoxon test</a></li>
<li class="chapter" data-level="23.4" data-path="Chapter_23.html"><a href="Chapter_23.html#independent-samples-t-test-1"><i class="fa fa-check"></i><b>23.4</b> Independent samples t-test</a></li>
<li class="chapter" data-level="23.5" data-path="Chapter_23.html"><a href="Chapter_23.html#mann-whitney-u-test-1"><i class="fa fa-check"></i><b>23.5</b> Mann-Whitney U Test</a></li>
</ul></li>
<li class="chapter" data-level="24" data-path="Chapter_24.html"><a href="Chapter_24.html"><i class="fa fa-check"></i><b>24</b> Analysis of variance</a>
<ul>
<li class="chapter" data-level="24.1" data-path="Chapter_24.html"><a href="Chapter_24.html#f-distribution"><i class="fa fa-check"></i><b>24.1</b> F-distribution</a></li>
<li class="chapter" data-level="24.2" data-path="Chapter_24.html"><a href="Chapter_24.html#one-way-anova"><i class="fa fa-check"></i><b>24.2</b> One-way ANOVA</a>
<ul>
<li class="chapter" data-level="24.2.1" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-mean-variance-among-groups"><i class="fa fa-check"></i><b>24.2.1</b> ANOVA mean variance among groups</a></li>
<li class="chapter" data-level="24.2.2" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-mean-variance-within-groups"><i class="fa fa-check"></i><b>24.2.2</b> ANOVA mean variance within groups</a></li>
<li class="chapter" data-level="24.2.3" data-path="Chapter_24.html"><a href="Chapter_24.html#anova-f-statistic-calculation"><i class="fa fa-check"></i><b>24.2.3</b> ANOVA F-statistic calculation</a></li>
</ul></li>
<li class="chapter" data-level="24.3" data-path="Chapter_24.html"><a href="Chapter_24.html#assumptions-of-anova"><i class="fa fa-check"></i><b>24.3</b> Assumptions of ANOVA</a></li>
</ul></li>
<li class="chapter" data-level="25" data-path="Chapter_25.html"><a href="Chapter_25.html"><i class="fa fa-check"></i><b>25</b> Multiple comparisons</a></li>
<li class="chapter" data-level="26" data-path="Chapter_26.html"><a href="Chapter_26.html"><i class="fa fa-check"></i><b>26</b> Kruskal-Wallis H test</a></li>
<li class="chapter" data-level="27" data-path="Chapter_27.html"><a href="Chapter_27.html"><i class="fa fa-check"></i><b>27</b> Two-way ANOVA</a></li>
<li class="chapter" data-level="28" data-path="Chapter_28.html"><a href="Chapter_28.html"><i class="fa fa-check"></i><b>28</b> <em>Practical</em>. ANOVA and associated tests</a>
<ul>
<li class="chapter" data-level="28.1" data-path="Chapter_28.html"><a href="Chapter_28.html#one-way-anova-site"><i class="fa fa-check"></i><b>28.1</b> One-way ANOVA (site)</a></li>
<li class="chapter" data-level="28.2" data-path="Chapter_28.html"><a href="Chapter_28.html#one-way-anova-profile"><i class="fa fa-check"></i><b>28.2</b> One-way ANOVA (profile)</a></li>
<li class="chapter" data-level="28.3" data-path="Chapter_28.html"><a href="Chapter_28.html#multiple-comparisons"><i class="fa fa-check"></i><b>28.3</b> Multiple comparisons</a></li>
<li class="chapter" data-level="28.4" data-path="Chapter_28.html"><a href="Chapter_28.html#kruskal-wallis-h-test"><i class="fa fa-check"></i><b>28.4</b> Kruskal-Wallis H test</a></li>
<li class="chapter" data-level="28.5" data-path="Chapter_28.html"><a href="Chapter_28.html#two-way-anova"><i class="fa fa-check"></i><b>28.5</b> Two-way ANOVA</a></li>
</ul></li>
<li class="chapter" data-level="29" data-path="Chapter_29.html"><a href="Chapter_29.html"><i class="fa fa-check"></i><b>29</b> Frequency and count data</a>
<ul>
<li class="chapter" data-level="29.1" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-distribution"><i class="fa fa-check"></i><b>29.1</b> Chi-square distribution</a></li>
<li class="chapter" data-level="29.2" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-goodness-of-fit"><i class="fa fa-check"></i><b>29.2</b> Chi-square goodness of fit</a></li>
<li class="chapter" data-level="29.3" data-path="Chapter_29.html"><a href="Chapter_29.html#chi-square-test-of-association"><i class="fa fa-check"></i><b>29.3</b> Chi-square test of association</a></li>
</ul></li>
<li class="chapter" data-level="30" data-path="Chapter_30.html"><a href="Chapter_30.html"><i class="fa fa-check"></i><b>30</b> Correlation</a>
<ul>
<li class="chapter" data-level="30.1" data-path="Chapter_30.html"><a href="Chapter_30.html#scatterplots"><i class="fa fa-check"></i><b>30.1</b> Scatterplots</a></li>
<li class="chapter" data-level="30.2" data-path="Chapter_30.html"><a href="Chapter_30.html#correlation-coefficient"><i class="fa fa-check"></i><b>30.2</b> Correlation coefficient</a>
<ul>
<li class="chapter" data-level="30.2.1" data-path="Chapter_30.html"><a href="Chapter_30.html#pearson-product-moment-correlation-coefficient"><i class="fa fa-check"></i><b>30.2.1</b> Pearson product moment correlation coefficient</a></li>
<li class="chapter" data-level="30.2.2" data-path="Chapter_30.html"><a href="Chapter_30.html#spearmans-rank-correlation-coefficient"><i class="fa fa-check"></i><b>30.2.2</b> Spearman’s rank correlation coefficient</a></li>
</ul></li>
<li class="chapter" data-level="30.3" data-path="Chapter_30.html"><a href="Chapter_30.html#correlation-hypothesis-testing"><i class="fa fa-check"></i><b>30.3</b> Correlation hypothesis testing</a></li>
</ul></li>
<li class="chapter" data-level="31" data-path="Chapter_31.html"><a href="Chapter_31.html"><i class="fa fa-check"></i><b>31</b> <em>Practical</em>. Analysis of counts and correlations</a>
<ul>
<li class="chapter" data-level="31.1" data-path="Chapter_31.html"><a href="Chapter_31.html#survival-goodness-of-fit"><i class="fa fa-check"></i><b>31.1</b> Survival goodness of fit</a></li>
<li class="chapter" data-level="31.2" data-path="Chapter_31.html"><a href="Chapter_31.html#colony-goodness-of-fit"><i class="fa fa-check"></i><b>31.2</b> Colony goodness of fit</a></li>
<li class="chapter" data-level="31.3" data-path="Chapter_31.html"><a href="Chapter_31.html#chi-square-test-of-association-1"><i class="fa fa-check"></i><b>31.3</b> Chi-Square test of association</a></li>
<li class="chapter" data-level="31.4" data-path="Chapter_31.html"><a href="Chapter_31.html#pearson-product-moment-correlation-test"><i class="fa fa-check"></i><b>31.4</b> Pearson product moment correlation test</a></li>
<li class="chapter" data-level="31.5" data-path="Chapter_31.html"><a href="Chapter_31.html#spearmans-rank-correlation-test"><i class="fa fa-check"></i><b>31.5</b> Spearman’s rank correlation test</a></li>
<li class="chapter" data-level="31.6" data-path="Chapter_31.html"><a href="Chapter_31.html#untidy-goodness-of-fit"><i class="fa fa-check"></i><b>31.6</b> Untidy goodness of fit</a></li>
</ul></li>
<li class="chapter" data-level="32" data-path="Chapter_32.html"><a href="Chapter_32.html"><i class="fa fa-check"></i><b>32</b> Simple linear regression</a>
<ul>
<li class="chapter" data-level="32.1" data-path="Chapter_32.html"><a href="Chapter_32.html#visual-interpretation-of-regression"><i class="fa fa-check"></i><b>32.1</b> Visual interpretation of regression</a></li>
<li class="chapter" data-level="32.2" data-path="Chapter_32.html"><a href="Chapter_32.html#intercepts-slopes-and-residuals"><i class="fa fa-check"></i><b>32.2</b> Intercepts, slopes, and residuals</a></li>
<li class="chapter" data-level="32.3" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-coefficients"><i class="fa fa-check"></i><b>32.3</b> Regression coefficients</a></li>
<li class="chapter" data-level="32.4" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-line-calculation"><i class="fa fa-check"></i><b>32.4</b> Regression line calculation</a></li>
<li class="chapter" data-level="32.5" data-path="Chapter_32.html"><a href="Chapter_32.html#coefficient-of-determination"><i class="fa fa-check"></i><b>32.5</b> Coefficient of determination</a></li>
<li class="chapter" data-level="32.6" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-assumptions"><i class="fa fa-check"></i><b>32.6</b> Regression assumptions</a></li>
<li class="chapter" data-level="32.7" data-path="Chapter_32.html"><a href="Chapter_32.html#regression-hypothesis-testing"><i class="fa fa-check"></i><b>32.7</b> Regression hypothesis testing</a>
<ul>
<li class="chapter" data-level="32.7.1" data-path="Chapter_32.html"><a href="Chapter_32.html#overall-model-significance"><i class="fa fa-check"></i><b>32.7.1</b> Overall model significance</a></li>
<li class="chapter" data-level="32.7.2" data-path="Chapter_32.html"><a href="Chapter_32.html#significance-of-the-intercept"><i class="fa fa-check"></i><b>32.7.2</b> Significance of the intercept</a></li>
<li class="chapter" data-level="32.7.3" data-path="Chapter_32.html"><a href="Chapter_32.html#significance-of-the-slope"><i class="fa fa-check"></i><b>32.7.3</b> Significance of the slope</a></li>
<li class="chapter" data-level="32.7.4" data-path="Chapter_32.html"><a href="Chapter_32.html#simple-regression-output"><i class="fa fa-check"></i><b>32.7.4</b> Simple regression output</a></li>
</ul></li>
<li class="chapter" data-level="32.8" data-path="Chapter_32.html"><a href="Chapter_32.html#prediction-with-linear-models"><i class="fa fa-check"></i><b>32.8</b> Prediction with linear models</a></li>
<li class="chapter" data-level="32.9" data-path="Chapter_32.html"><a href="Chapter_32.html#conclusion"><i class="fa fa-check"></i><b>32.9</b> Conclusion</a></li>
</ul></li>
<li class="chapter" data-level="33" data-path="Chapter_33.html"><a href="Chapter_33.html"><i class="fa fa-check"></i><b>33</b> Multiple regression</a>
<ul>
<li class="chapter" data-level="33.1" data-path="Chapter_33.html"><a href="Chapter_33.html#adjusted-coefficient-of-determination"><i class="fa fa-check"></i><b>33.1</b> Adjusted coefficient of determination</a></li>
</ul></li>
<li class="chapter" data-level="34" data-path="Chapter_34.html"><a href="Chapter_34.html"><i class="fa fa-check"></i><b>34</b> <em>Practical</em>. Using regression</a>
<ul>
<li class="chapter" data-level="34.1" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-pyrogenic-carbon-from-soil-depth"><i class="fa fa-check"></i><b>34.1</b> Predicting pyrogenic carbon from soil depth</a></li>
<li class="chapter" data-level="34.2" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-pyrogenic-carbon-from-fire-frequency"><i class="fa fa-check"></i><b>34.2</b> Predicting pyrogenic carbon from fire frequency</a></li>
<li class="chapter" data-level="34.3" data-path="Chapter_34.html"><a href="Chapter_34.html#multiple-regression-depth-and-fire-frequency"><i class="fa fa-check"></i><b>34.3</b> Multiple regression depth and fire frequency</a></li>
<li class="chapter" data-level="34.4" data-path="Chapter_34.html"><a href="Chapter_34.html#large-multiple-regression"><i class="fa fa-check"></i><b>34.4</b> Large multiple regression</a></li>
<li class="chapter" data-level="34.5" data-path="Chapter_34.html"><a href="Chapter_34.html#predicting-temperature-from-fire-frequency"><i class="fa fa-check"></i><b>34.5</b> Predicting temperature from fire frequency</a></li>
</ul></li>
<li class="chapter" data-level="35" data-path="Chapter_35.html"><a href="Chapter_35.html"><i class="fa fa-check"></i><b>35</b> Randomisation</a>
<ul>
<li class="chapter" data-level="35.1" data-path="Chapter_35.html"><a href="Chapter_35.html#summary-of-parametric-hypothesis-testing"><i class="fa fa-check"></i><b>35.1</b> Summary of parametric hypothesis testing</a></li>
<li class="chapter" data-level="35.2" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-approach"><i class="fa fa-check"></i><b>35.2</b> Randomisation approach</a></li>
<li class="chapter" data-level="35.3" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-for-hypothesis-testing"><i class="fa fa-check"></i><b>35.3</b> Randomisation for hypothesis testing</a></li>
<li class="chapter" data-level="35.4" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-assumptions"><i class="fa fa-check"></i><b>35.4</b> Randomisation assumptions</a></li>
<li class="chapter" data-level="35.5" data-path="Chapter_35.html"><a href="Chapter_35.html#bootstrapping"><i class="fa fa-check"></i><b>35.5</b> Bootstrapping</a></li>
<li class="chapter" data-level="35.6" data-path="Chapter_35.html"><a href="Chapter_35.html#randomisation-conclusions"><i class="fa fa-check"></i><b>35.6</b> Randomisation conclusions</a></li>
</ul></li>
<li class="appendix"><span><b>Appendix</b></span></li>
<li class="chapter" data-level="A" data-path="appendexA.html"><a href="appendexA.html"><i class="fa fa-check"></i><b>A</b> Answers to chapter exercises</a>
<ul>
<li class="chapter" data-level="A.1" data-path="appendexA.html"><a href="appendexA.html#chapter-3"><i class="fa fa-check"></i><b>A.1</b> Chapter 3</a>
<ul>
<li class="chapter" data-level="A.1.1" data-path="appendexA.html"><a href="appendexA.html#exercise-3.1"><i class="fa fa-check"></i><b>A.1.1</b> Exercise 3.1:</a></li>
<li class="chapter" data-level="A.1.2" data-path="appendexA.html"><a href="appendexA.html#exercise-3.2"><i class="fa fa-check"></i><b>A.1.2</b> Exercise 3.2</a></li>
<li class="chapter" data-level="A.1.3" data-path="appendexA.html"><a href="appendexA.html#exercise-3.3"><i class="fa fa-check"></i><b>A.1.3</b> Exercise 3.3</a></li>
<li class="chapter" data-level="A.1.4" data-path="appendexA.html"><a href="appendexA.html#exercise-3.4"><i class="fa fa-check"></i><b>A.1.4</b> Exercise 3.4</a></li>
</ul></li>
<li class="chapter" data-level="A.2" data-path="appendexA.html"><a href="appendexA.html#chapter-8"><i class="fa fa-check"></i><b>A.2</b> Chapter 8</a>
<ul>
<li class="chapter" data-level="A.2.1" data-path="appendexA.html"><a href="appendexA.html#exercise-8.1"><i class="fa fa-check"></i><b>A.2.1</b> Exercise 8.1</a></li>
<li class="chapter" data-level="A.2.2" data-path="appendexA.html"><a href="appendexA.html#exercise-8.2"><i class="fa fa-check"></i><b>A.2.2</b> Exercise 8.2</a></li>
<li class="chapter" data-level="A.2.3" data-path="appendexA.html"><a href="appendexA.html#exercise-8.3"><i class="fa fa-check"></i><b>A.2.3</b> Exercise 8.3</a></li>
</ul></li>
<li class="chapter" data-level="A.3" data-path="appendexA.html"><a href="appendexA.html#chapter-14"><i class="fa fa-check"></i><b>A.3</b> Chapter 14</a>
<ul>
<li class="chapter" data-level="A.3.1" data-path="appendexA.html"><a href="appendexA.html#exercise-14.1"><i class="fa fa-check"></i><b>A.3.1</b> Exercise 14.1</a></li>
<li class="chapter" data-level="A.3.2" data-path="appendexA.html"><a href="appendexA.html#exercise-14.2"><i class="fa fa-check"></i><b>A.3.2</b> Exercise 14.2</a></li>
<li class="chapter" data-level="A.3.3" data-path="appendexA.html"><a href="appendexA.html#exercise-14.3"><i class="fa fa-check"></i><b>A.3.3</b> Exercise 14.3</a></li>
<li class="chapter" data-level="A.3.4" data-path="appendexA.html"><a href="appendexA.html#exercise-14.4"><i class="fa fa-check"></i><b>A.3.4</b> Exercise 14.4</a></li>
<li class="chapter" data-level="A.3.5" data-path="appendexA.html"><a href="appendexA.html#exercise-14.5"><i class="fa fa-check"></i><b>A.3.5</b> Exercise 14.5</a></li>
</ul></li>
<li class="chapter" data-level="A.4" data-path="appendexA.html"><a href="appendexA.html#chapter-17"><i class="fa fa-check"></i><b>A.4</b> Chapter 17</a>
<ul>
<li class="chapter" data-level="A.4.1" data-path="appendexA.html"><a href="appendexA.html#exercise-17.1"><i class="fa fa-check"></i><b>A.4.1</b> Exercise 17.1</a></li>
<li class="chapter" data-level="A.4.2" data-path="appendexA.html"><a href="appendexA.html#exercise-17.2"><i class="fa fa-check"></i><b>A.4.2</b> Exercise 17.2</a></li>
<li class="chapter" data-level="A.4.3" data-path="appendexA.html"><a href="appendexA.html#exercise-17.3"><i class="fa fa-check"></i><b>A.4.3</b> Exercise 17.3</a></li>
</ul></li>
<li class="chapter" data-level="A.5" data-path="appendexA.html"><a href="appendexA.html#chapter-20"><i class="fa fa-check"></i><b>A.5</b> Chapter 20</a>
<ul>
<li class="chapter" data-level="A.5.1" data-path="appendexA.html"><a href="appendexA.html#exercise-20.1"><i class="fa fa-check"></i><b>A.5.1</b> Exercise 20.1</a></li>
<li class="chapter" data-level="A.5.2" data-path="appendexA.html"><a href="appendexA.html#exercise-20.2"><i class="fa fa-check"></i><b>A.5.2</b> Exercise 20.2</a></li>
<li class="chapter" data-level="A.5.3" data-path="appendexA.html"><a href="appendexA.html#exercise-20.3"><i class="fa fa-check"></i><b>A.5.3</b> Exercise 20.3</a></li>
<li class="chapter" data-level="A.5.4" data-path="appendexA.html"><a href="appendexA.html#exercise-20.4"><i class="fa fa-check"></i><b>A.5.4</b> Exercise 20.4</a></li>
<li class="chapter" data-level="A.5.5" data-path="appendexA.html"><a href="appendexA.html#exercise-20.5"><i class="fa fa-check"></i><b>A.5.5</b> Exercise 20.5</a></li>
</ul></li>
<li class="chapter" data-level="A.6" data-path="appendexA.html"><a href="appendexA.html#chapter-23"><i class="fa fa-check"></i><b>A.6</b> Chapter 23</a>
<ul>
<li class="chapter" data-level="A.6.1" data-path="appendexA.html"><a href="appendexA.html#exercise-23.1"><i class="fa fa-check"></i><b>A.6.1</b> Exercise 23.1</a></li>
<li class="chapter" data-level="A.6.2" data-path="appendexA.html"><a href="appendexA.html#exercise-23.2"><i class="fa fa-check"></i><b>A.6.2</b> Exercise 23.2</a></li>
<li class="chapter" data-level="A.6.3" data-path="appendexA.html"><a href="appendexA.html#exercise-23.3"><i class="fa fa-check"></i><b>A.6.3</b> Exercise 23.3</a></li>
<li class="chapter" data-level="A.6.4" data-path="appendexA.html"><a href="appendexA.html#exercise-23.4"><i class="fa fa-check"></i><b>A.6.4</b> Exercise 23.4</a></li>
<li class="chapter" data-level="A.6.5" data-path="appendexA.html"><a href="appendexA.html#exercise-23.5"><i class="fa fa-check"></i><b>A.6.5</b> Exercise 23.5</a></li>
</ul></li>
<li class="chapter" data-level="A.7" data-path="appendexA.html"><a href="appendexA.html#chapter-28"><i class="fa fa-check"></i><b>A.7</b> Chapter 28</a>
<ul>
<li class="chapter" data-level="A.7.1" data-path="appendexA.html"><a href="appendexA.html#exercise-28.1"><i class="fa fa-check"></i><b>A.7.1</b> Exercise 28.1</a></li>
<li class="chapter" data-level="A.7.2" data-path="appendexA.html"><a href="appendexA.html#exercise-28.2"><i class="fa fa-check"></i><b>A.7.2</b> Exercise 28.2</a></li>
<li class="chapter" data-level="A.7.3" data-path="appendexA.html"><a href="appendexA.html#exercise-28.3"><i class="fa fa-check"></i><b>A.7.3</b> Exercise 28.3</a></li>
<li class="chapter" data-level="A.7.4" data-path="appendexA.html"><a href="appendexA.html#exercise-28.4"><i class="fa fa-check"></i><b>A.7.4</b> Exercise 28.4</a></li>
</ul></li>
<li class="chapter" data-level="A.8" data-path="appendexA.html"><a href="appendexA.html#chapter-31"><i class="fa fa-check"></i><b>A.8</b> Chapter 31</a>
<ul>
<li class="chapter" data-level="A.8.1" data-path="appendexA.html"><a href="appendexA.html#exercise-31.1"><i class="fa fa-check"></i><b>A.8.1</b> Exercise 31.1</a></li>
<li class="chapter" data-level="A.8.2" data-path="appendexA.html"><a href="appendexA.html#exercise-31.2"><i class="fa fa-check"></i><b>A.8.2</b> Exercise 31.2</a></li>
<li class="chapter" data-level="A.8.3" data-path="appendexA.html"><a href="appendexA.html#exercise-31.3"><i class="fa fa-check"></i><b>A.8.3</b> Exercise 31.3</a></li>
<li class="chapter" data-level="A.8.4" data-path="appendexA.html"><a href="appendexA.html#exercise-31.4"><i class="fa fa-check"></i><b>A.8.4</b> Exercise 31.4</a></li>
<li class="chapter" data-level="A.8.5" data-path="appendexA.html"><a href="appendexA.html#exercise-31.5"><i class="fa fa-check"></i><b>A.8.5</b> Exercise 31.5</a></li>
</ul></li>
<li class="chapter" data-level="A.9" data-path="appendexA.html"><a href="appendexA.html#chapter-34"><i class="fa fa-check"></i><b>A.9</b> Chapter 34</a>
<ul>
<li class="chapter" data-level="A.9.1" data-path="appendexA.html"><a href="appendexA.html#exercise-34.1"><i class="fa fa-check"></i><b>A.9.1</b> Exercise 34.1</a></li>
<li class="chapter" data-level="A.9.2" data-path="appendexA.html"><a href="appendexA.html#exercise-34.2"><i class="fa fa-check"></i><b>A.9.2</b> Exercise 34.2</a></li>
<li class="chapter" data-level="A.9.3" data-path="appendexA.html"><a href="appendexA.html#exercise-34.3"><i class="fa fa-check"></i><b>A.9.3</b> Exercise 34.3</a></li>
<li class="chapter" data-level="A.9.4" data-path="appendexA.html"><a href="appendexA.html#exercise-34.4"><i class="fa fa-check"></i><b>A.9.4</b> Exercise 34.4</a></li>
<li class="chapter" data-level="A.9.5" data-path="appendexA.html"><a href="appendexA.html#exercise-33.5"><i class="fa fa-check"></i><b>A.9.5</b> Exercise 33.5</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="B" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html"><i class="fa fa-check"></i><b>B</b> Uncertainty derivation</a>
<ul>
<li class="chapter" data-level="B.1" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html#propagation-of-error-for-addition-and-subtraction"><i class="fa fa-check"></i><b>B.1</b> Propagation of error for addition and subtraction</a></li>
<li class="chapter" data-level="B.2" data-path="uncertainty_derivation.html"><a href="uncertainty_derivation.html#propagation-of-error-for-multiplication-and-division"><i class="fa fa-check"></i><b>B.2</b> Propagation of error for multiplication and division</a></li>
</ul></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
<li class="divider"></li>
<li><a href="https://github.com/rstudio/bookdown" target="blank">Published with bookdown</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Fundamental statistical concepts and techniques in the biological and environmental sciences: With jamovi</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="Chapter_3" class="section level1 hasAnchor" number="3">
<h1><span class="header-section-number">Chapter 3</span> <em>Practical</em>. Preparing data<a href="Chapter_3.html#Chapter_3" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<p>In this chapter, we will use a spreadsheet to organise datasets following the tidy approach explained in <a href="Chapter_2.html#Chapter_2">Chapter 2</a>, then save these datasets as CSV files to be opened in jamovi statistical software <span class="citation">(<a href="#ref-Jamovi2022" role="doc-biblioref">The jamovi project, 2024</a>)</span>.
The data organisation in this chapter can be completed using <a href="https://www.libreoffice.org/discover/calc/">LibreOffice Calc</a>, MS Excel, or <a href="https://docs.google.com/spreadsheets/">Google Sheets</a>.
The screenshots below will be from LibreOffice Calc, but the instructions provided will work on any of the three aforementioned spreadsheet programs.</p>
<p>There are four data exercises in this chapter.
All of these exercises will focus on organising data into a tidy format.
Exercise 3.1 uses handwritten field data that need to be entered into a spreadsheet in a tidy format.
These data include information shown in Figure 2.2, plus tallies of seed counts.
The goal is to get all of this information into a tidy format and save it as a CSV file.
Exercise 3.2 presents some data on the number of eggs produced by five different fig wasp species (more on these in <a href="Chapter_8.html#Chapter_8">Chapter 8</a>).
The data are in an untidy format, so the goal is to reorganise them and save them as a tidy CSV file.
Exercise 3.3 presents counts of the same five fig wasp species as in Exercise 3.2, which need to be reorganised in a tidy format.
Exercise 3.4 presents data that are even more messy.
These are morphological measurements of the same five species of wasps, including lengths and widths of wasp heads, thoraxes, and abdomens.
The goal in this exercise is to tidy the data, then estimate total wasp volume from the morphological measurements using mathematical formulas, keeping in mind the order of operations from <a href="Chapter_1.html#Chapter_1">Chapter 1</a>.</p>
<div id="transferring-data-to-a-spreadsheet" class="section level2 hasAnchor" number="3.1">
<h2><span class="header-section-number">3.1</span> Transferring data to a spreadsheet<a href="Chapter_3.html#transferring-data-to-a-spreadsheet" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Exercise 3.1 focuses on data collected from the fruits of fig trees collected from Baja, Mexico in 2010 <span class="citation">(<a href="#ref-Duthie2015b" role="doc-biblioref">Duthie et al., 2015</a>; <a href="#ref-Duthie2016" role="doc-biblioref">Duthie & Nason, 2016</a>)</span>.
Due to the nature of the work, the data needed to be recorded in notebooks and collected in two different locations.
The first location was the field, where data were collected identifying tree locations and fruit dimensions.
Baja is hot and sunny (Figure 3.1).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-10"></span>
<img src="img/Ficus_petiolaris.jpg" alt="A large tree is shown in the desert with a person dressed in tan clothes in the foreground" width="100%" />
<p class="caption">
Figure 3.1: Fully grown Sonoran Desert Rock Fig in the desert of Baja, Mexico.
</p>
</div>
<p>Fruit measurements were made with a ruler and recorded in a field notebook.
These measurements are shown in Figure 3.2.</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-11"></span>
<img src="img/handwritten_data.jpg" alt="A zoomed-in portion of a lab notebook is shown, which includes handwritten data in pencil observations of mature fig fruits, including date, species, site, tree, and fruit dimensions." width="100%" />
<p class="caption">
Figure 3.2: Portion of a lab notebook used to record measurements of fig fruits from different trees in 2010.
</p>
</div>
<p>The second location was in a lab in Iowa, USA.
Fruits were dried and shipped to Iowa State University so that seeds could be counted under a microscope.
Counts were originally recorded as tallies in a lab notebook.
The goal of Exercise 3.1 is to get all of this information into a single tidy spreadsheet.</p>
<p>The best place to start is with an empty spreadsheet, so open a new one in LibreOffice Calc, MS Excel, or Google Sheets.
Remember that each row will be a unique observation; in this case, a unique fig fruit from which measurements were recorded.
Each column will be a variable of that observation.
Fortunately, the data in Figure 3.2 are already looking quite tidy.
The information here can be put into the spreadsheet mostly as written in the notebook.
But there are a few points to keep in mind:</p>
<ol style="list-style-type: decimal">
<li>It is important to start in column A and row 1; do not leave any empty rows or columns because when we get to the statistical analysis in jamovi, jamovi will assume that these empty rows and columns signify missing data.</li>
<li>There is no need to include any formatting (e.g., bold, underline, colour) because it will not be saved in the CSV or recognised by jamovi.</li>
<li>Missing information, such as the empty boxes for the fruit dimensions in row 4 in the notebook (Figure 3.2), should be indicated with an ‘<code>NA</code>’ (capital letters, but without the quotes). This will let jamovi know that these data are missing.</li>
<li>The date is written in an American style of month-day-year, which might get confusing. It might be better to have separate columns for year, month, and day, and to write out the full year (2010).</li>
</ol>
<p>The column names in Figure 3.2 are (1) Date, (2) Species, (3) Site number, (4) Tree number, (5) Fruit length in millimetres, (6) Fruit width in millimetres, and (7) Fruit height in millimetres.
All of the species are <em>Ficus petiolaris</em>, which is abbreviated to ‘F-pet’ in the field notebook.
How you choose to write some of this information down is up to you (e.g., date format, capitalisation of column names), but when finished, the spreadsheet should be organised like the one in Figure 3.3.</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-12"></span>
<img src="img/Ch1_Ex1a.png" alt="A screenshot of a spreadsheet with 7 columns and 6 rows of data on fig fruit dimensions." width="100%" />
<p class="caption">
Figure 3.3: Spreadsheet with data organised in a tidy format and nearly ready for analysis.
</p>
</div>
<p>This leaves us with the data that had to be collected later in the lab.
Small seeds needed to be meticulously separated from other material in the fig fruit, then tallied under a microscope. Tallies from this notebook are recreated below.</p>
<p><strong>Site 70, Tree 70, Fruit 1: 238 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ 𝍫</code></pre>
<p><strong>Site 70, Tree 70, Fruit 2: 198 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ 𝍫</code></pre>
<p><strong>Site 70, Tree 70, Fruit 3: 220 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ</code></pre>
<p><strong>Site 70, Tree 70, Fruit 4: 169 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ 𝍬</code></pre>
<p><strong>Site 70, Tree 70, Fruit 5: 188 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ 𝍫</code></pre>
<p><strong>Site 70, Tree 70, Fruit 6: 139 total</strong></p>
<pre><code>ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ
ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ ᚎ 𝍬</code></pre>
<p>Fortunately, the summed tallies have been written next to the site, tree, and fruit, which makes inputting them into a spreadsheet easier.
But it is important to also recognise this step as a potential source of human error in data collection.
It is possible that the tallies were counted inaccurately, meaning that the tallies do not sum to the numbers reported above.
It is always good to be able to go back and check.
There are at least two other potential sources of human error in counting seeds and inputting them into the spreadsheet, one before, and one after counting the tallies.
Fill in 1 and 3 below with potential causes of error.</p>
<ol style="list-style-type: decimal">
<li></li>
<li>Tallies are not counted correctly in the lab notebook</li>
<li></li>
</ol>
<p>Next, create a new column in the spreadsheet and call it ‘Seeds’ (use column K).
Fill in the seed counts for each of the six rows.
The end result will be a tidy dataset that is ready to be saved as a CSV.</p>
<p>What you do next depends on the spreadsheet program that you are using and how you are using it.
If you are using LibreOffice Calc or MS Excel on your computer, then you should be able to simply save your file as something like ‘Fig_fruits.csv’, and the program will recognise that you intend to save as a CSV file (in MS Excel, you might need to find the pull-down box for ‘Save as type:’ under the ‘File name:’ box and choose ‘CSV’).
If you are using Google Sheets, you can navigate in the toolbar to ‘File <span class="math inline">\(\to\)</span> Download <span class="math inline">\(\to\)</span> Comma-separated values (.csv)’, which will start a download of your spreadsheet in CSV format.
If you are using MS Excel in a browser online, then it is a bit more tedious.
At the time of writing, the online version of MS Excel does not allow users to save or export to a CSV.
It will therefore be necessary to save as an XLSX, then convert to CSV later in another spreadsheet program (local version of MS Excel, LibreOffice Calc, or Google Sheets).</p>
<p>Save your file in a location where you know that you can find it again.
It might be a good idea to create a new folder on your computer or your cloud storage online for files in this book.
This will ensure that you always know where your data files are located and can access them easily.</p>
</div>
<div id="making-spreadsheet-data-tidy" class="section level2 hasAnchor" number="3.2">
<h2><span class="header-section-number">3.2</span> Making spreadsheet data tidy<a href="Chapter_3.html#making-spreadsheet-data-tidy" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Exercise 3.2 is more self-guided than Exercise 3.1.
After reading <a href="Chapter_2.html#Chapter_2">Chapter 2</a> and completing Exercise 3.1, you should have a bit more confidence in organising data in a tidy format.
Here we will work with a dataset that includes counts of the number of eggs collected from fig wasps, which are small species of insects that lay their eggs into the ovules of fig flowers <span class="citation">(<a href="#ref-Weiblen2002" role="doc-biblioref">Weiblen, 2002</a>)</span>.
You can download this dataset online<a href="#fn1" class="footnote-ref" id="fnref1"><sup>1</sup></a> or recreate it from Table 3.1.</p>
<table>
<caption><strong>TABLE 3.1</strong> Untidy dataset of egg loads from fig wasps of five different species, including two unnamed species of the genus <em>Heterandrium</em> (Het1 and Het2) and three unnamed species of the genus <em>Idarnes</em> (LO1, SO1, and SO2).</caption>
<thead>
<tr class="header">
<th align="center">Het1</th>
<th align="center">Het2</th>
<th align="center">LO1</th>
<th align="center">SO1</th>
<th align="center">SO2</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center">35</td>
<td align="center">51</td>
<td align="center">72</td>
<td align="center">50</td>
<td align="center">44</td>
</tr>
<tr class="even">
<td align="center">32</td>
<td align="center">55</td>
<td align="center">76</td>
<td align="center">47</td>
<td align="center">44</td>
</tr>
<tr class="odd">
<td align="center">34</td>
<td align="center">52</td>
<td align="center">77</td>
<td align="center">48</td>
<td align="center">46</td>
</tr>
<tr class="even">
<td align="center">38</td>
<td align="center">54</td>
<td align="center">78</td>
<td align="center">54</td>
<td align="center">36</td>
</tr>
<tr class="odd">
<td align="center">34</td>
<td align="center">55</td>
<td align="center">76</td>
<td align="center">54</td>
<td align="center">51</td>
</tr>
<tr class="even">
<td align="center">34</td>
<td align="center">54</td>
<td align="center">72</td>
<td align="center">46</td>
<td align="center">50</td>
</tr>
<tr class="odd">
<td align="center">34</td>
<td align="center">56</td>
<td align="center">79</td>
<td align="center">50</td>
<td align="center">36</td>
</tr>
<tr class="even">
<td align="center">34</td>
<td align="center">53</td>
<td align="center">76</td>
<td align="center">50</td>
<td align="center">56</td>
</tr>
<tr class="odd">
<td align="center">32</td>
<td align="center">54</td>
<td align="center">77</td>
<td align="center">52</td>
<td align="center">58</td>
</tr>
<tr class="even">
<td align="center">30</td>
<td align="center">54</td>
<td align="center">75</td>
<td align="center">51</td>
<td align="center">45</td>
</tr>
<tr class="odd">
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">49</td>
</tr>
<tr class="even">
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">39</td>
</tr>
<tr class="odd">
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">54</td>
</tr>
<tr class="even">
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center"></td>
<td align="center">52</td>
</tr>
</tbody>
</table>
<p>Using what you have learnt in <a href="Chapter_2.html#Chapter_2">Chapter 2</a> and Exercise 3.1, create a tidy version of the wasp egg loads dataset.
For a helpful hint, it might be most efficient to open a new spreadsheet and copy and paste information from the old to the new.</p>
<p>How many columns did you need to create the new dataset? _________</p>
<p>Are there any missing data in this dataset? _________</p>
<p>Save the tidy dataset to a CSV file.</p>
</div>
<div id="making-data-tidy-again" class="section level2 hasAnchor" number="3.3">
<h2><span class="header-section-number">3.3</span> Making data tidy again<a href="Chapter_3.html#making-data-tidy-again" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Exercise 3.3, like Exercise 3.2, is self-guided.
The data are presented in a fairly common, but untidy, format, and the challenge is to reorganise them into a tidy dataset that is ready for statistical analysis.
Table 3.2 shows the number of different species of wasps counted in five different fig fruits.
Rows list all of the species and columns list the fruits, with the counts in the middle.
This is an efficient way to present the data so that they are all easy to see, but this will not work for running statistical analysis.</p>
<table style="width:83%;">
<caption><strong>TABLE 3.2</strong> Efficient but untidy way to present count data. Counts of different species of fig wasps (rows) are from five different fig fruits (columns). Data were originally collected from Baja, Mexico in 2010.</caption>
<colgroup>
<col width="13%" />
<col width="13%" />
<col width="13%" />
<col width="13%" />
<col width="13%" />
<col width="13%" />
</colgroup>
<thead>
<tr class="header">
<th align="center">Species</th>
<th align="center">Fruit_1</th>
<th align="center">Fruit_2</th>
<th align="center">Fruit_3</th>
<th align="center">Fruit_4</th>
<th align="center">Fruit_5</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td align="center">Het1</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">1</td>
<td align="center">0</td>
</tr>
<tr class="even">
<td align="center">Het2</td>
<td align="center">0</td>
<td align="center">2</td>
<td align="center">3</td>
<td align="center">0</td>
<td align="center">0</td>
</tr>
<tr class="odd">
<td align="center">LO1</td>
<td align="center">4</td>
<td align="center">37</td>
<td align="center">0</td>
<td align="center">0</td>
<td align="center">3</td>
</tr>
<tr class="even">
<td align="center">SO1</td>
<td align="center">0</td>
<td align="center">1</td>
<td align="center">0</td>
<td align="center">3</td>
<td align="center">2</td>
</tr>
<tr class="odd">
<td align="center">SO2</td>
<td align="center">1</td>
<td align="center">12</td>
<td align="center">2</td>
<td align="center">0</td>
<td align="center">0</td>
</tr>
</tbody>
</table>
<p>This exercise might be a bit more challenging than Exercise 3.2.
The goal is to use the information in Table 3.2 to create a tidy dataset.
Remember that each observation (wasp counts, in this case) should get its own row, and each variable should get its own column.
Try creating a tidy dataset from the information in Table 3.2, then save the dataset to a CSV file.</p>
</div>
<div id="tidy-data-and-spreadsheet-calculations" class="section level2 hasAnchor" number="3.4">
<h2><span class="header-section-number">3.4</span> Tidy data and spreadsheet calculations<a href="Chapter_3.html#tidy-data-and-spreadsheet-calculations" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Exercise 3.4 requires some restructuring and calculations.
The dataset that will be used in this exercise includes morphological measurements from five species of fig wasps, the same species used in Exercises 3.2 and 3.3.
The dataset for this exercise can be downloaded online<a href="#fn2" class="footnote-ref" id="fnref2"><sup>2</sup></a>.
This dataset is about as untidy as it gets.
First note that there are multiple sheets in the spreadsheet, which is not allowed in a CSV file.
You can see these sheets by looking at the very bottom of the spreadsheet, which will have separating tabs called Het1, Het2, LO1, SO1, and SO2 (Figure 3.4).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-20"></span>
<img src="img/spreadsheet_tabs.png" alt="A screenshot the tabs found at the bottom of a spreadsheet." width="100%" />
<p class="caption">
Figure 3.4: Spreadsheets can include multiple sheets. This image shows that the spreadsheet containing information for fig wasp morphology includes five separate sheets, one for each species.
</p>
</div>
<p>You can click on all of the different tabs to see the measurements of head length, head width, thorax length, thorax width, abdomen length, and abdomen width for wasps of each of the five species.
All of the measurements are collected in millimetres.
Note that the individual sheets contain text formatting (titles highlighted and in bold), and there is a picture of each wasp in its respective sheet.
The formatting and pictures are a nice touch for providing some context, but they cannot be used in statistical analysis.
The first task is to create a tidy version of this dataset.
Probably the best way to do this is to create a new spreadsheet entirely and copy-paste information from the old.
It is a good idea to think about how the tidy dataset will look before getting started.
What columns should this new dataset include? Write your answer below.</p>
<pre><code>
</code></pre>
<p>How many rows are needed? _________________</p>
<p>When you are ready, create the new dataset.
Your dataset should have all of the relevant information about wasp head, thorax, and abdomen measurements.</p>
<p>Next comes a slightly more challenging part, which will make use of some of the background mathematics reviewed in <a href="Chapter_1.html#Chapter_1">Chapter 1</a>.
Suppose that we wanted our new dataset to include information about the volumes of each of the three wasp body segments, and wasp total volume.
To do this, let us assume that the wasp head is a sphere (it is not, exactly, but this is probably the best estimate that we can get under the circumstances).
Calculate the head volume of each wasp using the following formula,</p>
<p><span class="math display">\[V_{\mathrm{head}} = \frac{4}{3}\pi \left(\frac{Head_L + Head_W}{4}\right)^{3}.\]</span></p>
<p>In the equation above, <span class="math inline">\(Head_{\mathrm{L}}\)</span> is head length (mm) and <span class="math inline">\(Head_{\mathrm{W}}\)</span> is head width (note, <span class="math inline">\((Head_\mathrm{L} + Head_\mathrm{W})/4\)</span> estimates the radius of the head).
You can replace <span class="math inline">\(\pi\)</span> with the approximation <span class="math inline">\(\pi \approx 3.14\)</span>.
To make this calculation in your spreadsheet, find the cell in which you want to put the head volume.
By typing in the <code>=</code> sign, the spreadsheet will know to start a new calculation or function in that cell.
Try this with an empty cell by typing ‘= 5 + 4’ in it (without quotes).
When you hit ‘Enter’, the spreadsheet will make the calculation for you, and the number in the new cell will be 9.
To see the equation again, you just need to double-click on the cell.</p>
<p>To get an estimate of head volume into the dataset, we can create a new column of data.
To calculate <span class="math inline">\(V_{\mathrm{head}}\)</span> for the first wasp in row 2 of the spreadsheet, we could select the spreadsheet cell H2 and type the code, <code>=(4/3)*(3.14)*((B2+C2)/4)^3</code>.
Notice that the code recognises B2 and C2 as spreadsheet cells, and takes the values from these cells when doing these calculations.
If the values of B2 or C2 were to change, then so would the calculated value in H2.
Also notice that we are using parentheses to make sure that the order of operations is correct.
We want to add head length and width before dividing by 4, so we type <code>((B2+C2)/4)</code> to ensure with the innermost parentheses that head length and width are added before dividing.
Once all of this is completed, we raise everything in parentheses to the third power using the <code>^3</code>, so <code>((B2+C2)/4)^3</code>.
Different mathematical operations can be carried out using the symbols in Table 3.3.</p>
<table>
<caption><strong>TABLE 3.3</strong> List of mathematical operations available in a spreadsheet.</caption>
<thead>
<tr class="header">
<th>Symbol</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>+</code></td>
<td>Addition</td>
</tr>
<tr class="even">
<td><code>-</code></td>
<td>Subtraction</td>
</tr>
<tr class="odd">
<td><code>*</code></td>
<td>Multiplication</td>
</tr>
<tr class="even">
<td><code>/</code></td>
<td>Division</td>
</tr>
<tr class="odd">
<td><code>^</code></td>
<td>Exponent</td>
</tr>
<tr class="even">
<td><code>sqrt()</code></td>
<td>Square-root</td>
</tr>
</tbody>
</table>
<p>The last operation in Table 3.3 is a function that takes the square-root of anything within the parentheses.
Other functions are also available that can make calculations across cells (e.g., <code>=SUM</code> or <code>=AVERAGE</code>).</p>
<p>Once head volume is calculated for the first wasp in cell H2, it is very easy to do the rest.
One nice feature of a spreadsheet is that it can usually recognise when the cells need to change (B2 and C2, in this case).
To get the rest of the head volumes, we just need to select the bottom right of the H2 cell.
There will be a very small square in this bottom right (see Figure 3.5), and if we click and drag it down, the spreadsheet will do the same calculation for each row (e.g., in H3, it will use B3 and C3 in the formula rather than B2 and C2).</p>
<div class="figure"><span style="display:block;" id="fig:unnamed-chunk-21"></span>
<img src="img/Ch1_Ex3_copy_formula.png" alt="A screenshot of a spreadsheet with the H2 cell selected." width="100%" />
<p class="caption">
Figure 3.5: Dataset of wasp morphological measurements from five species of fig wasps collected from Baja, Mexico in 2010. Head volume (column H) has been calculated for row 2, and to calculate it for the remaining rows, the small black square in the bottom right of the highlighted cell H2 can be clicked and dragged down to H27.
</p>
</div>
<p>Another way to achieve the same result is to copy the contents of cell H2, highlight cells H3–H27, then paste.
However you do it, you should now have a new column of calculated head volumes.</p>
<p>Next, suppose that we want to calculate thorax and abdomen volumes for all wasps.
Unlike wasp heads, wasp thoraxes and abdomens are clearly not spheres.
But it is perhaps not entirely unreasonable to model them as ellipsoids.
To calculate wasp thorax and abdomen volumes assuming an ellipsoid shape, we can use the formula,</p>
<p><span class="math display">\[V_{\mathrm{thorax}} = \frac{4}{3}\pi \left(\frac{Thorax_{\mathrm{L}}}{2}\right)\left(\frac{Thorax_{\mathrm{W}}}{2}\right)^{2}.\]</span>
In the equation above, <span class="math inline">\(Thorax_{\mathrm{L}}\)</span> is thorax length (mm) and <span class="math inline">\(Thorax_{\mathrm{W}}\)</span> is thorax width.
Substitute <span class="math inline">\(Abdomen_{\mathrm{L}}\)</span> and <span class="math inline">\(Abdomen_{\mathrm{W}}\)</span> to instead calculate abdomen volume (<span class="math inline">\(V_{\mathrm{abdomen}}\)</span>).
What formula will you type into your empty spreadsheet cell to calculate <span class="math inline">\(V_{\mathrm{thorax}}\)</span>?
Keep in mind the order of operations indicated in the equation above.</p>
<pre><code>
</code></pre>
<p>Now fill in the columns for thorax volume and abdomen volume.
You should now have three new columns of data from calculations of the volumes of the head, thorax, and abdomen of each wasp.
Lastly, add one final column of data for total volume, which is the sum of the three segments.</p>
<p>There are a lot of potential sources of error and uncertainty in these final volumes.
What are some reasons that we might want to be cautious about our calculated wasp volumes?
Explain in 2–3 sentences.</p>
<pre><code>
</code></pre>
<p>Save your wasp morphology file as a CSV.
This was the last exercise of the chapter.
You should now be comfortable formatting tidy datasets for use in jamovi.</p>
</div>
<div id="summary" class="section level2 hasAnchor" number="3.5">
<h2><span class="header-section-number">3.5</span> Summary<a href="Chapter_3.html#summary" class="anchor-section" aria-label="Anchor link to header"></a></h2>
<p>Completing this practical should give you the skills that you need to prepare datasets for statistical analysis.
There are many additional features of spreadsheets that were not introduced (mainly because we will do them in jamovi) but could be useful to learn.
For example, if we wanted to calculate the sum of all head lengths, we could use the function <code>=sum(B2:B27)</code> in any spreadsheet cell (where B2 is the head length of the first wasp, and B27 is the head length of the last wasp).
Other functions such as <code>=count()</code>, <code>=min()</code>, <code>=max()</code>, or <code>=average()</code> can be similarly used for calculations.</p>
</div>
</div>
<h3>References<a href="references.html#references" class="anchor-section" aria-label="Anchor link to header"></a></h3>
<div id="refs" class="references csl-bib-body hanging-indent" line-spacing="2">
<div id="ref-Duthie2015b" class="csl-entry">
Duthie, A. B., Abbott, K. C., & Nason, J. D. (2015). <span class="nocase">Trade-offs and coexistence in fluctuating environments: evidence for a key dispersal-fecundity trade-off in five nonpollinating fig wasps</span>. <em>American Naturalist</em>, <em>186</em>(1), 151–158. <a href="https://doi.org/10.1086/681621">https://doi.org/10.1086/681621</a>
</div>
<div id="ref-Duthie2016" class="csl-entry">
Duthie, A. B., & Nason, J. D. (2016). <span class="nocase">Plant connectivity underlies plant-pollinator-exploiter distributions in <em>Ficus petiolaris</em> and associated pollinating and non-pollinating fig wasps</span>. <em>Oikos</em>, <em>125</em>(11), 1597–1606. <a href="https://doi.org/10.1111/oik.02629">https://doi.org/10.1111/oik.02629</a>
</div>
<div id="ref-Jamovi2022" class="csl-entry">
The jamovi project. (2024). <em>Jamovi (version 2.5)</em>. <a href="https://www.jamovi.org">https://www.jamovi.org</a>
</div>
<div id="ref-Weiblen2002" class="csl-entry">
Weiblen, G. D. (2002). <span class="nocase">How to be a fig wasp</span>. <em>Annual Review of Entomology</em>, <em>47</em>, 299–330.
</div>
</div>
<div class="footnotes">
<hr />
<ol start="1">
<li id="fn1"><p><a href="https://bradduthie.github.io/stats/data/wasp_egg_loads_untidy.xlsx">https://bradduthie.github.io/stats/data/wasp_egg_loads_untidy.xlsx</a><a href="Chapter_3.html#fnref1" class="footnote-back">↩︎</a></p></li>
<li id="fn2"><p><a href="https://bradduthie.github.io/stats/data/wasp_morphology_untidy.xlsx">https://bradduthie.github.io/stats/data/wasp_morphology_untidy.xlsx</a><a href="Chapter_3.html#fnref2" class="footnote-back">↩︎</a></p></li>
</ol>
</div>
</section>
</div>
</div>
</div>
<a href="Chapter_2.html" class="navigation navigation-prev " aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
<a href="Chapter_4.html" class="navigation navigation-next " aria-label="Next page"><i class="fa fa-angle-right"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": "https://github.com/rstudio/bookdown-demo/edit/master/01-Background.Rmd",
"text": "Edit"
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": null,
"search": {
"engine": "fuse",