-
Notifications
You must be signed in to change notification settings - Fork 20
/
train.py
1112 lines (977 loc) · 44.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import hashlib
import itertools
import math
import json
import random
import os
from pathlib import Path
from typing import Iterable, Optional
import subprocess
import sys
from typing import Optional
import inspect
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torchinfo import summary
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler, get_cosine_with_hard_restarts_schedule_with_warmup
from diffusers.training_utils import EMAModel
from diffusers.utils.import_utils import is_xformers_available
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
from lora_diffusion import (
inject_trainable_lora,
save_lora_weight,
extract_lora_ups_down,
monkeypatch_lora,
tune_lora_scale,
)
logger = get_logger(__name__)
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_name_or_path",
type=str,
default=None,
help="Path to pretrained vae or vae identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--instance_data_dir",
type=str,
default=None,
required=True,
help="A folder containing the training data of instance images.",
)
parser.add_argument(
"--class_data_dir",
type=str,
default=None,
required=False,
help="A folder containing the training data of class images.",
)
parser.add_argument(
"--instance_prompt",
type=str,
default=None,
required=True,
help="The prompt with identifier specifying the instance",
)
parser.add_argument(
"--class_prompt",
type=str,
default=None,
help="The prompt to specify images in the same class as provided instance images.",
)
parser.add_argument(
"--save_sample_prompt",
type=str,
default=None,
help="The prompt used to generate sample outputs to save.",
)
parser.add_argument(
"--save_sample_negative_prompt",
type=str,
default=None,
help="The negative prompt used to generate sample outputs to save.",
)
parser.add_argument(
"--n_save_sample",
type=int,
default=4,
help="The number of samples to save.",
)
parser.add_argument("--save_interval", type=int, default=10_000, help="Save weights every N steps.")
parser.add_argument("--save_min_steps", type=int, default=0, help="Start saving weights after N steps.")
parser.add_argument(
"--save_guidance_scale",
type=float,
default=7.5,
help="CFG for save sample.",
)
parser.add_argument(
"--save_infer_steps",
type=int,
default=50,
help="The number of inference steps for save sample.",
)
parser.add_argument(
"--with_prior_preservation",
default=False,
action="store_true",
help="Flag to add prior preservation loss.",
)
parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
parser.add_argument(
"--num_class_images",
type=int,
default=100,
help=(
"Minimal class images for prior preservation loss. If there are not enough images already present in"
" class_data_dir, additional images will be sampled with class_prompt."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="text-inversion-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument("--augment_min_resolution", type=int, default=None, help="Resize minimum image dimension before augmention pipeline.")
parser.add_argument(
"--augment_center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument(
"--augment_hflip", action="store_true", help="Whether to center crop images before resizing to resolution"
)
parser.add_argument("--train_text_encoder", action="store_true", help="Whether to train the text encoder")
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument(
"--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--learning_rate_text",
type=float,
default=5e-6,
help="Initial learning rate for text encoder (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_cosine_num_cycles", type=float, default=1.0, help="Number of cycles when using cosine_with_restarts lr scheduler."
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma parameter for the EMA model.")
parser.add_argument("--ema_power", type=float, default=3 / 4, help="Exponential factor of EMA warmup.")
parser.add_argument("--ema_min_value", type=float, default=0.0, help="The minimum EMA decay rate.")
parser.add_argument("--ema_max_value", type=float, default=0.9999, help="The maximum EMA decay rate.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--log_gpu", action="store_true", help="Whether or not to log GPU memory usage."
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--use_image_captions",
action="store_true",
help="Get captions from textfile, otherwise filename",
)
parser.add_argument(
"--conditioning_dropout_prob",
type=float,
default=0.0,
help="Probability that conditioning is dropped.",
)
parser.add_argument(
"--use_lora", action="store_true", help="Whether or not to use lora."
)
parser.add_argument(
"--lora_rank",
type=int,
default=4,
help="Rank reduction for LoRA.",
)
parser.add_argument(
"--debug", action="store_true", help="Some exra verbosity."
)
parser.add_argument("--unconditional_prompt", type=str, default=" ", help="Prompt for conditioning dropout.")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
if args.with_prior_preservation:
if args.class_data_dir is None:
raise ValueError("You must specify a data directory for class images.")
if args.class_prompt is None:
raise ValueError("You must specify prompt for class images.")
return args
class DreamBoothDataset(Dataset):
"""
A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
It pre-processes the images and the tokenizes prompts.
"""
def __init__(
self,
instance_data_root,
instance_prompt,
tokenizer,
class_data_root=None,
class_prompt=None,
use_image_captions=False,
unconditional_prompt=" ",
size=512,
augment_min_resolution=None,
augment_center_crop=False,
augment_hflip=False,
debug=False,
):
self.tokenizer = tokenizer
self.use_image_captions = use_image_captions
self.size = size
self.augment_center_crop = augment_center_crop
self.augment_hflip = augment_hflip
self.instance_data_root = Path(instance_data_root)
if not self.instance_data_root.exists():
raise ValueError("Instance images root doesn't exists.")
self.instance_images_path = [path for path in self.instance_data_root.glob('*') if '.txt' not in path.suffix]
self.num_instance_images = len(self.instance_images_path)
self.instance_prompt = instance_prompt
self.debug = debug
self._length = self.num_instance_images
if class_data_root is not None:
self.class_data_root = Path(class_data_root)
self.class_data_root.mkdir(parents=True, exist_ok=True)
self.class_images_path = [path for path in self.class_data_root.glob('*') if '.txt' not in path.suffix]
random.shuffle(self.class_images_path)
self.num_class_images = len(self.class_images_path)
self._length = max(self.num_class_images, self.num_instance_images)
self.class_prompt = class_prompt
else:
self.class_data_root = None
self.unconditional_prompt = unconditional_prompt
# Data augmentation pipeline
augment_list = []
if augment_min_resolution is not None:
augment_list.append(transforms.Resize(augment_min_resolution))
if augment_center_crop:
augment_list.append(transforms.CenterCrop(size))
else:
augment_list.append(transforms.RandomCrop(size))
if augment_hflip:
augment_list.append(transforms.RandomHorizontalFlip(0.5))
# Convert to format usable by model.
# Keep separate in case dumping augmentations to disk
transform_list = []
transform_list.append(transforms.ToTensor())
transform_list.append(transforms.Normalize([0.5], [0.5]))
if len(augment_list)>0:
self.augment_transforms = transforms.Compose(augment_list)
else:
self.augment_transforms = None
self.image_transforms = transforms.Compose(transform_list)
def __len__(self):
return self._length
def __getitem__(self, index):
example = {}
image_path = self.instance_images_path[index % self.num_instance_images]
instance_image = Image.open(image_path)
if not instance_image.mode == "RGB":
instance_image = instance_image.convert("RGB")
if self.augment_transforms is not None:
instance_image = self.augment_transforms(instance_image)
if self.debug:
hash_image = hashlib.sha1(instance_image.tobytes()).hexdigest()
image_filename = image_path.stem + f"-{hash_image}.jpg"
instance_image.save(os.path.join("/content/augment", image_filename))
example["instance_images"] = self.image_transforms(instance_image)
if self.use_image_captions:
caption_path = image_path.with_suffix(".txt")
if caption_path.exists():
with open(caption_path) as f:
caption = f.read()
else:
caption = caption_path.stem
caption = ''.join([i for i in caption if not i.isdigit()]) # not sure necessary
caption = caption.replace("_"," ")
self.instance_prompt = caption
example["instance_prompt_ids"] = self.tokenizer(
self.instance_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.debug:
print("\nInstance: " + str(image_path))
print(self.instance_prompt)
if self.class_data_root:
image_path = self.class_images_path[index % self.num_class_images]
class_image = Image.open(image_path)
if not class_image.mode == "RGB":
class_image = class_image.convert("RGB")
if self.augment_transforms is not None:
class_image = self.augment_transforms(class_image)
if self.debug:
hash_image = hashlib.sha1(class_image.tobytes()).hexdigest()
image_filename = image_path.stem + f"-{hash_image}.jpg"
class_image.save(os.path.join("/content/augment", image_filename))
example["class_images"] = self.image_transforms(class_image)
if self.use_image_captions:
caption_path = image_path.with_suffix(".txt")
if caption_path.exists():
with open(caption_path) as f:
caption = f.read()
else:
caption = caption_path.stem
caption = ''.join([i for i in caption if not i.isdigit()]) # not sure necessary
caption = caption.replace("_"," ")
self.class_prompt = caption
example["class_prompt_ids"] = self.tokenizer(
self.class_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
if self.debug:
print("\nClass: " + str(image_path))
print(self.class_prompt)
example["unconditional_prompt_ids"] = self.tokenizer(
self.unconditional_prompt,
padding="do_not_pad",
truncation=True,
max_length=self.tokenizer.model_max_length,
).input_ids
return example
class PromptDataset(Dataset):
"A simple dataset to prepare the prompts to generate class images on multiple GPUs."
def __init__(self, prompt, num_samples):
self.prompt = prompt
self.num_samples = num_samples
def __len__(self):
return self.num_samples
def __getitem__(self, index):
example = {}
example["prompt"] = self.prompt
example["index"] = index
return example
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def get_gpu_memory_map():
result = subprocess.check_output(
[
'nvidia-smi', '--query-gpu=memory.used',
'--format=csv,nounits,noheader'
], encoding='utf-8')
gpu_memory = [int(x) for x in result.strip().split('\n')]
gpu_memory_map = dict(zip(range(len(gpu_memory)), gpu_memory))
return gpu_memory_map
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def main(args):
torch.set_printoptions(precision=10)
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
#cudnn.benchmark = False
#cudnn.deterministic = True
set_seed(args.seed)
if args.with_prior_preservation:
pipeline = None
class_images_dir = Path(args.class_data_dir)
if not class_images_dir.exists():
class_images_dir.mkdir(parents=True)
cur_class_images = len(list(class_images_dir.iterdir()))
if cur_class_images < args.num_class_images:
torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
if pipeline is None:
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
vae=AutoencoderKL.from_pretrained(
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
subfolder=None if args.pretrained_vae_name_or_path else "vae",
revision=None if args.pretrained_vae_name_or_path else args.revision,
torch_dtype=torch_dtype,
),
torch_dtype=torch_dtype,
safety_checker=None,
revision=args.revision
)
pipeline.set_progress_bar_config(disable=True)
pipeline.to(accelerator.device)
num_new_images = args.num_class_images - cur_class_images
logger.info(f"Number of class images to sample: {num_new_images}.")
sample_dataset = PromptDataset(args.class_prompt, num_new_images)
sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)
sample_dataloader = accelerator.prepare(sample_dataloader)
for example in tqdm(
sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
):
images = pipeline(example["prompt"]).images
for i, image in enumerate(images):
hash_image = hashlib.sha1(image.tobytes()).hexdigest()
image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
image.save(image_filename)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
# Load models and create wrapper for stable diffusion
text_encoder = CLIPTextModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="text_encoder",
revision=args.revision,
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
subfolder=None if args.pretrained_vae_name_or_path else "vae",
revision=None if args.pretrained_vae_name_or_path else args.revision,
)
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
)
if is_xformers_available():
try:
unet.enable_xformers_memory_efficient_attention()
except Exception as e:
logger.warning(
"Could not enable memory efficient attention. Make sure xformers is installed"
f" correctly and a GPU is available: {e}"
)
if args.use_lora:
unet.requires_grad_(False)
unet_lora_params, unet_names = inject_trainable_lora(unet, r=args.lora_rank)
if args.debug:
for _up, _down in extract_lora_ups_down(unet):
print("Before training: Unet First Layer lora up", _up.weight.data)
print("Before training: Unet First Layer lora down", _down.weight.data)
break
vae.requires_grad_(False)
if args.train_text_encoder and args.use_lora:
text_encoder.requires_grad_(False)
text_encoder_lora_params, text_encoder_names = inject_trainable_lora(
text_encoder, target_replace_module=["CLIPAttention"],
r=args.lora_rank,
)
if args.debug:
for _up, _down in extract_lora_ups_down(
text_encoder, target_replace_module=["CLIPAttention"]
):
print("Before training: text encoder First Layer lora up", _up.weight.data)
print("Before training: text encoder First Layer lora down", _down.weight.data)
break
elif not args.train_text_encoder:
text_encoder.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder.gradient_checkpointing_enable()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
text_lr = (
args.learning_rate
if args.learning_rate_text is None
else args.learning_rate_text
)
if args.use_lora:
params_to_optimize = (
[
{
"params": itertools.chain(*unet_lora_params), "lr": args.learning_rate
},
{
"params": itertools.chain(*text_encoder_lora_params),
"lr": text_lr,
},
]
if args.train_text_encoder
else itertools.chain(*unet_lora_params)
)
else:
params_to_optimize = (
[
{
"params": itertools.chain(unet.parameters()), "lr": args.learning_rate
},
{
"params": itertools.chain(text_encoder.parameters()),
"lr": text_lr,
},
]
if args.train_text_encoder
else unet.parameters()
)
if args.debug:
print(summary(vae, col_names=["num_params", "trainable"], verbose=1))
print(summary(unet, col_names=["num_params", "trainable"], verbose=1))
print(summary(text_encoder, col_names=["num_params", "trainable"], verbose=1))
with open(os.path.join(args.output_dir, "vae.txt"), "w") as f:
f.write(str(summary(vae, col_names=["num_params", "trainable"], verbose=2)))
f.close()
with open(os.path.join(args.output_dir, "unet.txt"), "w") as f:
f.write(str(summary(unet, col_names=["num_params", "trainable"], verbose=2)))
f.close()
with open(os.path.join(args.output_dir, "text_encoder.txt"), "w") as f:
f.write(str(summary(text_encoder, col_names=["num_params", "trainable"], verbose=2)))
f.close()
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
train_dataset = DreamBoothDataset(
instance_data_root=args.instance_data_dir,
instance_prompt=args.instance_prompt,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
use_image_captions=args.use_image_captions,
unconditional_prompt=args.unconditional_prompt,
tokenizer=tokenizer,
size=args.resolution,
augment_min_resolution=args.augment_min_resolution,
augment_center_crop=args.augment_center_crop,
augment_hflip=args.augment_hflip,
debug=args.debug,
)
def collate_fn(examples):
input_ids = [example["instance_prompt_ids"] for example in examples]
pixel_values = [example["instance_images"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
pixel_values += [example["class_images"] for example in examples]
# Apply text-conditioning dropout by inserting uninformative prompt
if args.conditioning_dropout_prob > 0:
unconditional_ids = [example["unconditional_prompt_ids"] for example in examples]*2
for i, input_id in enumerate(input_ids):
if random.uniform(0.0, 1.0) <= args.conditioning_dropout_prob:
input_ids[i] = unconditional_ids[i]
pixel_values = torch.stack(pixel_values)
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
input_ids = tokenizer.pad(
{"input_ids": input_ids},
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids
batch = {
"input_ids": input_ids,
"pixel_values": pixel_values,
}
return batch
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
if args.lr_scheduler=="cosine_with_restarts":
lr_scheduler = get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
num_cycles=args.lr_cosine_num_cycles,
)
else:
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
if not args.train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype)
# Create EMA for the unet.
if args.use_ema:
ema_unet = EMAModel(
accelerator.unwrap_model(unet),
inv_gamma=args.ema_inv_gamma,
power=args.ema_power,
min_value=args.ema_min_value,
max_value=args.ema_max_value
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("***** Running training *****")
print(f" Num examples = {len(train_dataset)}")
print(f" Num batches each epoch = {len(train_dataloader)}")
print(f" Num Epochs = {args.num_train_epochs}")
print(f" Instantaneous batch size per device = {args.train_batch_size}")
print(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
print(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
print(f" Total optimization steps = {args.max_train_steps}")
def save_weights(step):
# Create the pipeline using using the trained modules and save it.
if accelerator.is_main_process:
save_dir = os.path.join(args.output_dir, f"{step}")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, "args.json"), "w") as f:
json.dump(args.__dict__, f, indent=2)
# https://github.com/huggingface/diffusers/issues/1566
accepts_keep_fp32_wrapper = "keep_fp32_wrapper" in set(
inspect.signature(accelerator.unwrap_model).parameters.keys()
)
extra_args = (
{"keep_fp32_wrapper": True} if accepts_keep_fp32_wrapper else {}
)
if args.train_text_encoder:
text_enc_model = accelerator.unwrap_model(text_encoder, **extra_args)
else:
text_enc_model = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision)
pipeline = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=accelerator.unwrap_model(
ema_unet.averaged_model if args.use_ema else unet,
**extra_args,
),
text_encoder=text_enc_model,
vae=AutoencoderKL.from_pretrained(
args.pretrained_vae_name_or_path or args.pretrained_model_name_or_path,
subfolder=None if args.pretrained_vae_name_or_path else "vae",
revision=None if args.pretrained_vae_name_or_path else args.revision,
),
safety_checker=None,
torch_dtype=torch.float16,
revision=args.revision,
)
if args.use_lora:
save_lora_weight(pipeline.unet, os.path.join(save_dir, "lora_unet.pt"))
if args.debug:
for _up, _down in extract_lora_ups_down(pipeline.unet):
print("First Unet Layer's Up Weight is now : ", _up.weight.data)
print("First Unet Layer's Down Weight is now : ", _down.weight.data)
break
if args.train_text_encoder:
save_lora_weight(
pipeline.text_encoder,
os.path.join(save_dir, "lora_text_encoder.pt"),
target_replace_module=["CLIPAttention"],
)
if args.debug:
for _up, _down in extract_lora_ups_down(
pipeline.text_encoder,
target_replace_module=["CLIPAttention"],
):
print("First Text Encoder Layer's Up Weight is now : ", _up.weight.data)
print("First Text Encoder Layer's Down Weight is now : ", _down.weight.data)
break
# No arguments yet, leave at defaults for now
#tune_lora_scale(pipeline.text_encoder, 1.00)
#tune_lora_scale(pipeline.unet, 1.00)
else:
pipeline.save_pretrained(save_dir)
if args.save_sample_prompt is not None:
pipeline = pipeline.to(accelerator.device)
if is_xformers_available():
pipeline.enable_xformers_memory_efficient_attention()
save_sample_prompt = args.save_sample_prompt
save_sample_prompt = list(map(str.strip, save_sample_prompt.split('//')))
pipeline = pipeline.to(accelerator.device)
g_cuda = torch.Generator(device=accelerator.device).manual_seed(args.seed)
pipeline.set_progress_bar_config(disable=True)
sample_dir = os.path.join(save_dir, "samples")
os.makedirs(sample_dir, exist_ok=True)
with torch.autocast("cuda"), torch.inference_mode():
all_images = []
for i in tqdm(range(args.n_save_sample), desc="Generating samples"):
images = pipeline(
save_sample_prompt,
negative_prompt=[args.save_sample_negative_prompt]*len(save_sample_prompt),
guidance_scale=args.save_guidance_scale,
num_inference_steps=args.save_infer_steps,
generator=g_cuda
).images
all_images.extend(images)
grid = image_grid(all_images, rows=args.n_save_sample, cols=len(save_sample_prompt))
grid.save(os.path.join(sample_dir, f"{step}.jpg"), quality=90, optimize=True)
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
print(f"[*] Weights saved at {save_dir}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0