-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
50 lines (42 loc) · 1.69 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Training and evaluation"""
import run_lib_score, run_lib_classifier
from absl import app
from absl import flags
from ml_collections.config_flags import config_flags
import logging
import os
import tensorflow as tf
FLAGS = flags.FLAGS
config_flags.DEFINE_config_file("config", None, "Training configuration.", lock_config=True)
flags.DEFINE_string("workdir", None, "Work directory.")
flags.DEFINE_string("restore", None, "Path to the checkpoint of a pretrained score model.")
flags.DEFINE_string("model", "score", "Running mode: train classifier, train uda model, or train score function")
flags.mark_flags_as_required(["workdir", "config", "model"])
def main(argv):
workdir = os.path.join('results', FLAGS.workdir)
config = FLAGS.config
config.model.score_restore_path = FLAGS.restore
tf.io.gfile.makedirs(workdir)
# Run the training pipeline
if FLAGS.model == "classifier":
run_lib_classifier.train(config, workdir)
elif FLAGS.model == "score":
run_lib_score.train(config, workdir)
else:
raise ValueError(f"Mode {FLAGS.mode} not recognized.")
if __name__ == "__main__":
app.run(main)