-
Notifications
You must be signed in to change notification settings - Fork 2
/
command.txt
145 lines (126 loc) · 13.9 KB
/
command.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# training teacher and get NT
# CE CIFAR-10 Teacher
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.2 --save_model
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.4 --save_model
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.6 --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.2 --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.3 --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.4 --save_model
# CE CIFAR-100 Teacher
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.2 --save_model
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.4 --save_model
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.6 --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.2 --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.3 --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.4 --save_model
# GCE CIFAR-10 Teacher
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.2 --save_model
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.4 --save_model
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.6 --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.2 --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.3 --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.4 --save_model
# GCE CIFAR-100 Teacher
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.2 --save_model
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.4 --save_model
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.6 --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.2 --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.3 --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.4 --save_model
# Co-T CIFAR-10 Teacher
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.2 --tau 0.2 --save_model
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.4 --tau 0.4 --save_model
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.6 --tau 0.6 --e_warm 60 --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.2 --tau 0.1 --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.3 --tau 0.15 --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.4 --tau 0.2 --e_warm 60 --save_model
# Co-T CIFAR-100 Teacher
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.2 --tau 0.2 --save_model
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.4 --tau 0.4 --save_model
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.6 --tau 0.6 --e_warm 60 --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.2 --tau 0.2 --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.3 --tau 0.3 --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.4 --tau 0.4 --e_warm 60 --save_model
# DMI CIFAR-10 Teacher (DMI requires a pretrained model (using CE) to initialize)
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.2 --init_path cifar10_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.4 --init_path cifar10_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.6 --init_path cifar10_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.2 --init_path cifar10_asym0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.3 --init_path cifar10_asym0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.4 --init_path cifar10_asym0.4_dp0.2_augstrong_seed0_best.pth --save_model
# DMI CIFAR-100 Teacher
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.2 --init_path cifar100_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.4 --init_path cifar100_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.6 --init_path cifar100_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.2 --init_path cifar100_pair0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.3 --init_path cifar100_pair0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.4 --init_path cifar100_pair0.4_dp0.2_augstrong_seed0_best.pth --save_model
# training student and get NS
# CE CIFAR-10 Student
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.2 --teacher_path cifar10_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.4 --teacher_path cifar10_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ce.py --noise_pattern uniform --noise_rate 0.6 --teacher_path cifar10_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.2 --teacher_path cifar10_asym0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.3 --teacher_path cifar10_asym0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ce.py --noise_pattern asym --noise_rate 0.4 --teacher_path cifar10_asym0.4_dp0.2_augstrong_seed0_best.pth --save_model
# CE CIFAR-100 Student
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.2 --teacher_path cifar100_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.4 --teacher_path cifar100_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ce.py --noise_pattern uniform --noise_rate 0.6 --teacher_path cifar100_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.2 --teacher_path cifar100_pair0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.3 --teacher_path cifar100_pair0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ce.py --noise_pattern pair --noise_rate 0.4 --teacher_path cifar100_pair0.4_dp0.2_augstrong_seed0_best.pth --save_model
# GCE CIFAR-10 Student
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.2 --teacher_path gce_cifar10_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.4 --teacher_path gce_cifar10_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_gce.py --noise_pattern uniform --noise_rate 0.6 --teacher_path gce_cifar10_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.2 --teacher_path gce_cifar10_asym0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.3 --teacher_path gce_cifar10_asym0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_gce.py --noise_pattern asym --noise_rate 0.4 --teacher_path gce_cifar10_asym0.4_dp0.2_augstrong_seed0_best.pth --save_model
# GCE CIFAR-100 Student
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.2 --teacher_path gce_cifar100_uniform0.2_dp0.0_augstandard_seed0_best.pth --save_model
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.4 --teacher_path gce_cifar100_uniform0.4_dp0.0_augstandard_seed0_best.pth --save_model
python train_cifar100_gce.py --noise_pattern uniform --noise_rate 0.6 --teacher_path gce_cifar100_uniform0.6_dp0.0_augstandard_seed0_best.pth --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.2 --teacher_path gce_cifar100_pair0.2_dp0.0_augstandard_seed0_best.pth --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.3 --teacher_path gce_cifar100_pair0.3_dp0.0_augstandard_seed0_best.pth --save_model
python train_cifar100_gce.py --noise_pattern pair --noise_rate 0.4 --teacher_path gce_cifar100_pair0.4_dp0.0_augstandard_seed0_best.pth --save_model
# Co-T CIFAR-10 Student
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.2 --tau 0.05 --teacher_path ct_cifar10_uniform0.2_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.4 --tau 0.1 --teacher_path ct_cifar10_uniform0.4_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ct.py --noise_pattern uniform --noise_rate 0.6 --tau 0.15 --e_warm 60 --teacher_path ct_cifar10_uniform0.6_warm60_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.2 --tau 0.03 --teacher_path ct_cifar10_asym0.2_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.3 --tau 0.04 --teacher_path ct_cifar10_asym0.3_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_ct.py --noise_pattern asym --noise_rate 0.4 --tau 0.05 --e_warm 60 --teacher_path ct_cifar10_asym0.4_warm60_dp0.2_augstrong_seed0_best.pth --save_model
# Co-T CIFAR-100 Student
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.2 --tau 0.1 --teacher_path ct_cifar100_uniform0.2_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.4 --tau 0.2 --teacher_path ct_cifar100_uniform0.4_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ct.py --noise_pattern uniform --noise_rate 0.6 --tau 0.3 --e_warm 60 --teacher_path ct_cifar100_uniform0.6_warm60_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.2 --tau 0.1 --teacher_path ct_cifar100_pair0.2_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.3 --tau 0.2 --teacher_path ct_cifar100_pair0.3_warm0_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_ct.py --noise_pattern pair --noise_rate 0.4 --tau 0.3 --e_warm 60 --teacher_path ct_cifar100_pair0.4_warm60_dp0.2_augstrong_seed0_best.pth --save_model
# DMI CIFAR-10 Student
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.2 --init_path cifar10_uniform0.2_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.4 --init_path cifar10_uniform0.4_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern uniform --noise_rate 0.6 --init_path cifar10_uniform0.6_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.2 --init_path cifar10_asym0.2_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_asym0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.3 --init_path cifar10_asym0.3_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_asym0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar10_dmi.py --noise_pattern asym --noise_rate 0.4 --init_path cifar10_asym0.4_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar10_asym0.4_dp0.2_augstrong_seed0_best.pth --save_model
# DMI CIFAR-100 Student
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.2 --init_path cifar100_uniform0.2_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_uniform0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.4 --init_path cifar100_uniform0.4_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_uniform0.4_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern uniform --noise_rate 0.6 --init_path cifar100_uniform0.6_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_uniform0.6_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.2 --init_path cifar100_pair0.2_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_pair0.2_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.3 --init_path cifar100_pair0.3_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_pair0.3_dp0.2_augstrong_seed0_best.pth --save_model
python train_cifar100_dmi.py --noise_pattern pair --noise_rate 0.4 --init_path cifar100_pair0.4_dp0.2_augstrong_seed0_best.pth --teacher_path dmi_cifar100_pair0.4_dp0.2_augstrong_seed0_best.pth --save_model
# Teacher: Clothing1M
python train_clothing1m_dividemix.py --root data/Clothing1M/
# Student 1: Clothing1M
python train_clothing1m_ce.py --root data/Clothing1M/ --teacher_path dividemix_net1.pth
# Student 2: Clothing1M
python train_clothing1m_ce.py --root data/Clothing1M/ --teacher_path dividemix_net2.pth
# Teacher: Clothing1M (Noisy Validation)
python train_clothing1m_dividemix.py --root data/Clothing1M/ --use_noisy_val
# Student 1: Clothing1M (Noisy Validation)
python train_clothing1m_ce.py --root data/Clothing1M/ --teacher_path nv_dividemix_net1.pth --use_noisy_val
# Student 2: Clothing1M (Noisy Validation)
python train_clothing1m_ce.py --root data/Clothing1M/ --teacher_path nv_dividemix_net2.pth --use_noisy_val