-
Notifications
You must be signed in to change notification settings - Fork 0
/
arduino_final_save.py
97 lines (85 loc) · 3.09 KB
/
arduino_final_save.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import math
import time
import numpy as np
import cv2
import cvzone
import ultralytics
from ultralytics import YOLO
from roboflow import Roboflow
import torch
import serial
from datetime import datetime
# SerialObj = serial.Serial('COM8') # COMxx format on Windows
# SerialObj.baudrate = 9600 # set Baud rate to 9600
# SerialObj.bytesize = 8 # Number of data bits = 8
# SerialObj.parity ='N' # No parity
# SerialObj.stopbits = 1 # Number of Stop bits = 1
# time.sleep(3)
cap = cv2.VideoCapture(1)
cap.set(3, 1280) # 3 = width
cap.set(4, 720) # 4 = height
# cap.set(3, 600) # 3 = width
# cap.set(4, 400) # 4 = height
# cv2.CAP_DSHOW
# cap.set(cv2.CAP_PROP_FRAME_WIDTH, 600)
# cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 400)
# width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
# height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
# print(width, height)
# rf_box = Roboflow(api_key="cIMps5GQKQXOUmHb153T")
# project_box = rf_box.workspace().project("box-object-detection")
# model_box = project_box.version(2).model
model_box = YOLO('BDM\\best.pt')
classNames = ['box']
# model_barcode = YOLO('BCDM\\best.pt')
# classNames = ['0']
# variables for box photo & barcode photo
box_capture = True
barcode_capture = True
while True:
now = datetime.now()
# dt_string = now.strftime("%d-%m-%Y-%H-%M-%S")
success, img = cap.read()
img = img[00:400,00:600]
# img = cv2.resize(img, (600, 400))
results = model_box(img, stream=True)
# results = model_barcode(img, stream=True)
for r in results:
boxes = r.boxes
for box in boxes:
# Bounding Box
x1, y1, x2, y2 = box.xyxy[0]
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
print(x1, y1, x2, y2)
# Confidence level
conf = math.ceil((box.conf[0] * 100)) / 100
print(conf)
# Class Name
cls = int(box.cls[0])
print(cls)
# Printing Confidence and Class Name
if(conf >= 0.5):
cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 255), 3)
cvzone.putTextRect(img, f'{classNames[cls]} {conf}', (max(0, x1), max(0, y1)), scale=0.5, thickness=1)
# calculations for sending stuff to robot
# for sending center point to robot
x_center = int((x1+x2)/2)
y_center = int((y1+y2)/2)
image = cv2.circle(img, (x_center,y_center), radius=0, color=(255, 0, 0), thickness=8)
# print(f"images/{dt_string}.png")
# cv2.imwrite(f"images/{dt_string}.png",image)
x_robot = int(300 - x_center)
y_robot = int(400 - y_center)
# SerialObj.write(x_robot) #transmit 'A' (8bit) to micro/Arduino
# SerialObj.write(str(x_robot).encode())
# print(str(x_robot).encode())
# res = SerialObj.readline()
# print(res)
# time.sleep(10)
# break
cv2.imshow("Image", img)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
# SerialObj.close() # Close the port