-
Notifications
You must be signed in to change notification settings - Fork 55
/
run_snli_predict.py
598 lines (537 loc) · 27.8 KB
/
run_snli_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
# coding=utf-8
from __future__ import absolute_import, division, print_function
import argparse
import csv
import logging
import os
import random
import sys
import numpy as np
import torch
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from tqdm import tqdm, trange
from tag_model.modeling import TagConfig
from data_process.datasets import SenSequence, DocSequence, QuerySequence, QueryTagSequence, \
DocTagSequence
from pytorch_pretrained_bert.modeling import BertForSequenceClassificationTag
from pytorch_pretrained_bert.tokenization import BertTokenizer
from tag_model.tag_tokenization import TagTokenizer
from tag_model.tagging import get_tags, SRLPredictor
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO)
logger = logging.getLogger(__name__)
#csv.field_size_limit(sys.maxsize)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, token_tag_sequence_a, token_tag_sequence_b, len_seq_a, len_seq_b, input_tag_ids, input_tag_verbs, input_tag_len, orig_to_token_split_idx, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.token_tag_sequence_a = token_tag_sequence_a
self.token_tag_sequence_b = token_tag_sequence_b
self.len_seq_a = len_seq_a
self.len_seq_b = len_seq_b
self.input_tag_ids = input_tag_ids
self.input_tag_verbs = input_tag_verbs
self.input_tag_len = input_tag_len
self.orig_to_token_split_idx = orig_to_token_split_idx
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r", encoding='utf-8') as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
if sys.version_info[0] == 2:
line = list(unicode(cell, 'utf-8') for cell in line)
lines.append(line)
return lines
class SnliProcessor(DataProcessor):
"""Processor for the SNLI data set (GLUE version)."""
def get_train_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_test_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "test.tsv")), "test")
def get_labels(self):
"""See base class."""
return ["contradiction", "entailment", "neutral"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, line[0])
text_a = line[7]
text_b = line[8]
label = line[-1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
tag_vocab = []
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, srl_predictor):
"""Loads a data file into a list of `InputBatch`s."""
label_map = {label : i for i, label in enumerate(label_list)}
print(label_map)
max_aspect = 0
features = []
for (ex_index, example) in enumerate(tqdm(examples)):
tokens_a = []
tokens_b = []
tok_to_orig_index_a = [] # subword_token_index -> org_word_index
tag_sequence = get_tags(srl_predictor, example.text_a, tag_vocab)
token_tag_sequence_a = QueryTagSequence(tag_sequence[0], tag_sequence[1])
tokens_a_org = tag_sequence[0]
if len(tag_sequence[1])> max_aspect:
max_aspect = len(tag_sequence[1])
tok_to_orig_index_a.append(0) # [CLS]
for (i, token) in enumerate(tokens_a_org):
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index_a.append(i + 1)
tokens_a.append(sub_token)
tok_to_orig_index_b = [] # subword_token_index -> org_word_index
token_tag_sequence_b = None
if example.text_b:
tag_sequence = get_tags(srl_predictor, example.text_b, tag_vocab)
token_tag_sequence_b = QueryTagSequence(tag_sequence[0], tag_sequence[1])
tokens_b_org = tag_sequence[0]
if len(tag_sequence[1]) > max_aspect:
max_aspect = len(tag_sequence[1])
for (i, token) in enumerate(tokens_b_org):
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index_b.append(i)
tokens_b.append(sub_token)
#print(len(tokens_a+tokens_b), len(tokens_a),len(tokens_b))
if len(tokens_a+tokens_b) > max_seq_length-3:
print("too long!!!!",len(tokens_a+tokens_b), len(tokens_a),len(tokens_b))
# Account for [CLS], [SEP], [SEP] with "- 3"
_truncate_seq_pair(tokens_a, tokens_b, tok_to_orig_index_a, tok_to_orig_index_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
print("too long!!!!", len(tokens_a))
tokens_a = tokens_a[:(max_seq_length - 2)]
tok_to_orig_index_a=tok_to_orig_index_a[:max_seq_length - 1] #already has the index for [CLS]
tok_to_orig_index_a.append(tok_to_orig_index_a[-1] + 1) # [SEP]
over_tok_to_orig_index = tok_to_orig_index_a
if example.text_b:
tok_to_orig_index_b.append(tok_to_orig_index_b[-1] + 1) # [SEP]
offset = tok_to_orig_index_a[-1]
for org_ix in tok_to_orig_index_b:
over_tok_to_orig_index.append(offset + org_ix + 1)
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
len_seq_a = tok_to_orig_index_a[len(tokens)-1] + 1
len_seq_b = None
if example.text_b:
tokens += tokens_b + ["[SEP]"]
len_seq_b = tok_to_orig_index_b[len(tokens_b)] + 1 #+1 SEP -1 for index
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
pre_ix = -1
start_split_ix = -1
over_token_to_orig_map_org = []
for value in over_tok_to_orig_index:
over_token_to_orig_map_org.append(value)
orig_to_token_split_idx = []
for token_ix, org_ix in enumerate(over_token_to_orig_map_org):
if org_ix != pre_ix:
pre_ix = org_ix
end_split_ix = token_ix - 1
if start_split_ix != -1:
orig_to_token_split_idx.append((start_split_ix, end_split_ix))
start_split_ix = token_ix
if start_split_ix != -1:
orig_to_token_split_idx.append((start_split_ix, token_ix))
while len(orig_to_token_split_idx) < max_seq_length:
orig_to_token_split_idx.append((-1,-1))
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
label_id = label_map[example.label]
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join(
[str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info(
"segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %d)" % (example.label, label_id))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
token_tag_sequence_a = token_tag_sequence_a,
token_tag_sequence_b = token_tag_sequence_b,
len_seq_a = len_seq_a,
len_seq_b = len_seq_b,
input_tag_ids = None,
input_tag_verbs = None,
input_tag_len = None,
orig_to_token_split_idx=orig_to_token_split_idx,
label_id=label_id))
return features
def transform_tag_features(max_num_aspect, features, tag_tokenizer, max_seq_length):
new_features = []
for example in features:
token_tag_sequence_a = example.token_tag_sequence_a
len_seq_a = example.len_seq_a
token_tag_sequence_a.aspect_padding(max_num_aspect)
tag_ids_list_a = token_tag_sequence_a.convert_to_ids(tag_tokenizer)
input_tag_ids = []
if example.token_tag_sequence_b != None:
token_tag_sequence_b = example.token_tag_sequence_b
token_tag_sequence_b.aspect_padding(max_num_aspect)
tag_ids_list_b = token_tag_sequence_b.convert_to_ids(tag_tokenizer)
len_seq_b = example.len_seq_b
input_que_tag_ids = []
for idx, query_tag_ids in enumerate(tag_ids_list_a):
query_tag_ids = [1] + query_tag_ids[:len_seq_a - 2] + [2] #CLS and SEP
input_que_tag_ids.append(query_tag_ids)
# construct input doc tag ids with same length as input ids
for idx, doc_tag_ids in enumerate(tag_ids_list_b):
tmp_input_tag_ids = input_que_tag_ids[idx]
doc_input_tag_ids = doc_tag_ids[:len_seq_b - 1] + [2] #SEP
input_tag_id = tmp_input_tag_ids + doc_input_tag_ids
while len(input_tag_id) < max_seq_length:
input_tag_id.append(0)
assert len(input_tag_id) == len(example.input_ids)
input_tag_ids.append(input_tag_id)
else:
for idx, query_tag_ids in enumerate(tag_ids_list_a):
query_tag_ids = [1] + query_tag_ids[:len_seq_a - 2] + [2] #CLS and SEP
input_tag_id = query_tag_ids
while len(input_tag_id) < max_seq_length:
input_tag_id.append(0)
assert len(input_tag_id) == len(example.input_ids)
input_tag_ids.append(input_tag_id)
# construct input doc tag ids with same length as input ids
example.input_tag_ids = input_tag_ids
new_features.append(example)
return new_features
def _truncate_seq_pair(tokens_a, tokens_b, tok_to_orig_index_a, tok_to_orig_index_b, max_length):
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
tok_to_orig_index_a.pop()
else:
tokens_b.pop()
tok_to_orig_index_b.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default="glue_data/MNLI/",
type=str,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default="bert-base-uncased", type=str,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name",
default="mnli",
type=str,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default="base_mnli",
type=str,
help="The output directory where the model predictions and checkpoints will be written.")
parser.add_argument("--tagger_path", default=None, type=str,
help="tagger_path for predictions if needing real-time tagging. Default: None, by loading pre-tagged data"
"For example, the trained models by AllenNLP")
parser.add_argument("--max_num_aspect",
default=3,
type=int,
help="max_num_aspect")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=3e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
processors = {
"snli": SnliProcessor,
}
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval and not args.do_predict:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
label_list = processor.get_labels()
num_labels = len(label_list)
tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
if args.tagger_path != None:
srl_predictor = SRLPredictor(args.tagger_path)
else:
srl_predictor = None
tag_tokenizer = TagTokenizer()
vocab_size = len(tag_tokenizer.ids_to_tags)
print("tokenizer vocab size: ", str(vocab_size))
tag_config = TagConfig(tag_vocab_size=vocab_size,
hidden_size=10,
layer_num=1,
output_dim=10,
dropout_prob=0.1,
num_aspect=args.max_num_aspect)
# Prepare optimizer
if args.do_eval:
# for epoch in trange(int(args.num_train_epochs), desc="Epoch"):
eval_examples = processor.get_dev_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer, srl_predictor=srl_predictor)
eval_features = transform_tag_features(args.max_num_aspect, eval_features, tag_tokenizer,
args.max_seq_length)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in eval_features], dtype=torch.long)
all_start_end_idx = torch.tensor([f.orig_to_token_split_idx for f in eval_features], dtype=torch.long)
all_input_tag_ids = torch.tensor([f.input_tag_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_end_idx,
all_input_tag_ids, all_label_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
# epoch = 1
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
model_state_dict = torch.load(output_model_file)
predict_model = BertForSequenceClassificationTag.from_pretrained(args.bert_model,
state_dict=model_state_dict,
num_labels=num_labels,
tag_config=tag_config)
predict_model.to(device)
predict_model.eval()
eval_loss, eval_accuracy = 0, 0
nb_eval_steps, nb_eval_examples = 0, 0
for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids, label_ids in tqdm(
eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
label_ids = label_ids.to(device)
start_end_idx = start_end_idx.to(device)
input_tag_ids = input_tag_ids.to(device)
with torch.no_grad():
tmp_eval_loss = predict_model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids,
label_ids)
logits = predict_model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids,
None)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
tmp_eval_accuracy = accuracy(logits, label_ids)
eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
result = {'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy}
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "a") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info("Result: %s = %s", key, str(result[key]))
writer.write("Result: %s = %s\n" % (key, str(result[key])))
logger.info("result: %s", str(result))
if args.do_predict:
eval_examples = processor.get_test_examples(args.data_dir)
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer,srl_predictor=srl_predictor )
eval_features = transform_tag_features(args.max_num_aspect, eval_features, tag_tokenizer, args.max_seq_length)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
all_start_end_idx = torch.tensor([f.orig_to_token_split_idx for f in eval_features], dtype=torch.long)
all_input_tag_ids = torch.tensor([f.input_tag_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_end_idx,
all_input_tag_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
output_model_file = os.path.join(args.output_dir, "pytorch_model.bin")
model_state_dict = torch.load(output_model_file)
predict_model = BertForSequenceClassificationTag.from_pretrained(args.bert_model, state_dict=model_state_dict,num_labels = num_labels,tag_config=tag_config)
predict_model.to(device)
predict_model.eval()
predictions = []
for input_ids, input_mask, segment_ids, start_end_idx, input_tag_ids in tqdm(
eval_dataloader, desc="Evaluating"):
input_ids = input_ids.to(device)
input_mask = input_mask.to(device)
segment_ids = segment_ids.to(device)
start_end_idx = start_end_idx.to(device)
input_tag_ids = input_tag_ids.to(device)
with torch.no_grad():
logits = predict_model(input_ids, segment_ids, input_mask, start_end_idx, input_tag_ids, None)
logits = logits.detach().cpu().numpy()
for (i, prediction) in enumerate(logits):
predict_label = np.argmax(prediction)
predictions.append(predict_label)
output_test_file = os.path.join(args.output_dir, "_pred_results.tsv")
index = 0
with open(output_test_file, "w") as writer:
writer.write("index" + "\t" + "prediction" + "\n")
for pred in predictions:
writer.write(str(index) + "\t" + str(label_list[int(pred)]) + "\n")
index += 1
if __name__ == "__main__":
main()