-
Notifications
You must be signed in to change notification settings - Fork 3
/
Embeddings.php
385 lines (341 loc) · 12.4 KB
/
Embeddings.php
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
<?php
namespace dokuwiki\plugin\aichat;
use dokuwiki\Extension\Event;
use dokuwiki\Extension\PluginInterface;
use dokuwiki\File\PageResolver;
use dokuwiki\plugin\aichat\Model\ChatInterface;
use dokuwiki\plugin\aichat\Model\EmbeddingInterface;
use dokuwiki\plugin\aichat\Storage\AbstractStorage;
use dokuwiki\Search\Indexer;
use splitbrain\phpcli\CLI;
use TikToken\Encoder;
use Vanderlee\Sentence\Sentence;
/**
* Manage the embeddings index
*
* Pages are split into chunks of 1000 tokens each. For each chunk the embedding vector is fetched from
* OpenAI and stored in the Storage backend.
*/
class Embeddings
{
/** @var int maximum overlap between chunks in tokens */
final public const MAX_OVERLAP_LEN = 200;
/** @var ChatInterface */
protected $chatModel;
/** @var EmbeddingInterface */
protected $embedModel;
/** @var CLI|null */
protected $logger;
/** @var Encoder */
protected $tokenEncoder;
/** @var AbstractStorage */
protected $storage;
/** @var array remember sentences when chunking */
private $sentenceQueue = [];
/** @var int the time spent for the last similar chunk retrieval */
public $timeSpent = 0;
protected $configChunkSize;
protected $configContextChunks;
protected $similarityThreshold;
/**
* Embeddings constructor.
*
* @param ChatInterface $chatModel
* @param EmbeddingInterface $embedModel
* @param AbstractStorage $storage
* @param array $config The plugin configuration
*/
public function __construct(
ChatInterface $chatModel,
EmbeddingInterface $embedModel,
AbstractStorage $storage,
$config
) {
$this->chatModel = $chatModel;
$this->embedModel = $embedModel;
$this->storage = $storage;
$this->configChunkSize = $config['chunkSize'];
$this->configContextChunks = $config['contextChunks'];
$this->similarityThreshold = $config['similarityThreshold'] / 100;
}
/**
* Access storage
*
* @return AbstractStorage
*/
public function getStorage()
{
return $this->storage;
}
/**
* Add a logger instance
*
* @return void
*/
public function setLogger(CLI $logger)
{
$this->logger = $logger;
}
/**
* Get the token encoder instance
*
* @return Encoder
*/
public function getTokenEncoder()
{
if (!$this->tokenEncoder instanceof Encoder) {
$this->tokenEncoder = new Encoder();
}
return $this->tokenEncoder;
}
/**
* Return the chunk size to use
*
* @return int
*/
public function getChunkSize()
{
return min(
floor($this->chatModel->getMaxInputTokenLength() / 4), // be able to fit 4 chunks into the max input
floor($this->embedModel->getMaxInputTokenLength() * 0.9), // only use 90% of the embedding model to be safe
$this->configChunkSize, // this is usually the smallest
);
}
/**
* Update the embeddings storage
*
* @param string $skipRE Regular expression to filter out pages (full RE with delimiters)
* @param string $matchRE Regular expression pages have to match to be included (full RE with delimiters)
* @param bool $clear Should any existing storage be cleared before updating?
* @return void
* @throws \Exception
*/
public function createNewIndex($skipRE = '', $matchRE = '', $clear = false)
{
$indexer = new Indexer();
$pages = $indexer->getPages();
$this->storage->startCreation($clear);
foreach ($pages as $pid => $page) {
$chunkID = $pid * 100; // chunk IDs start at page ID * 100
if (
!page_exists($page) ||
isHiddenPage($page) ||
filesize(wikiFN($page)) < 150 || // skip very small pages
($skipRE && preg_match($skipRE, (string)$page)) ||
($matchRE && !preg_match($matchRE, ":$page"))
) {
// this page should not be in the index (anymore)
$this->storage->deletePageChunks($page, $chunkID);
continue;
}
$firstChunk = $this->storage->getChunk($chunkID);
if ($firstChunk && @filemtime(wikiFN($page)) < $firstChunk->getCreated()) {
// page is older than the chunks we have, reuse the existing chunks
$this->storage->reusePageChunks($page, $chunkID);
if ($this->logger instanceof CLI) $this->logger->info("Reusing chunks for $page");
} else {
// page is newer than the chunks we have, create new chunks
$this->storage->deletePageChunks($page, $chunkID);
$chunks = $this->createPageChunks($page, $chunkID);
if ($chunks) $this->storage->addPageChunks($chunks);
}
}
$this->storage->finalizeCreation();
}
/**
* Split the given page, fetch embedding vectors and return Chunks
*
* Will use the text renderer plugin if available to get the rendered text.
* Otherwise the raw wiki text is used.
*
* @param string $page Name of the page to split
* @param int $firstChunkID The ID of the first chunk of this page
* @return Chunk[] A list of chunks created for this page
* @emits INDEXER_PAGE_ADD support plugins that add additional data to the page
* @throws \Exception
*/
public function createPageChunks($page, $firstChunkID)
{
$chunkList = [];
global $ID;
$ID = $page;
try {
$text = p_cached_output(wikiFN($page), 'aichat', $page);
} catch (\Throwable $e) {
if ($this->logger) $this->logger->error(
'Failed to render page {page}. Using raw text instead. {msg}',
['page' => $page, 'msg' => $e->getMessage()]
);
$text = rawWiki($page);
}
$crumbs = $this->breadcrumbTrail($page);
// allow plugins to modify the text before splitting
$eventData = [
'page' => $page,
'body' => '',
'metadata' => ['title' => $page, 'relation_references' => []],
];
$event = new Event('INDEXER_PAGE_ADD', $eventData);
if ($event->advise_before()) {
$text = $eventData['body'] . ' ' . $text;
} else {
$text = $eventData['body'];
}
$parts = $this->splitIntoChunks($text);
foreach ($parts as $part) {
if (trim((string)$part) == '') continue; // skip empty chunks
$part = $crumbs . "\n\n" . $part; // add breadcrumbs to each chunk
try {
$embedding = $this->embedModel->getEmbedding($part);
} catch (\Exception $e) {
if ($this->logger instanceof CLI) {
$this->logger->error(
'Failed to get embedding for chunk of page {page}: {msg}',
['page' => $page, 'msg' => $e->getMessage()]
);
}
continue;
}
$chunkList[] = new Chunk($page, $firstChunkID, $part, $embedding);
$firstChunkID++;
}
if ($this->logger instanceof CLI) {
if ($chunkList !== []) {
$this->logger->success(
'{id} split into {count} chunks',
['id' => $page, 'count' => count($chunkList)]
);
} else {
$this->logger->warning('{id} could not be split into chunks', ['id' => $page]);
}
}
return $chunkList;
}
/**
* Do a nearest neighbor search for chunks similar to the given question
*
* Returns only chunks the current user is allowed to read, may return an empty result.
* The number of returned chunks depends on the MAX_CONTEXT_LEN setting.
*
* @param string $query The question
* @param string $lang Limit results to this language
* @return Chunk[]
* @throws \Exception
*/
public function getSimilarChunks($query, $lang = '')
{
global $auth;
$vector = $this->embedModel->getEmbedding($query);
$fetch = min(
($this->chatModel->getMaxInputTokenLength() / $this->getChunkSize()),
$this->configContextChunks
);
$time = microtime(true);
$chunks = $this->storage->getSimilarChunks($vector, $lang, $fetch);
$this->timeSpent = round(microtime(true) - $time, 2);
if ($this->logger instanceof CLI) {
$this->logger->info(
'Fetched {count} similar chunks from store in {time} seconds. Query: {query}',
['count' => count($chunks), 'time' => $this->timeSpent, 'query' => $query]
);
}
$size = 0;
$result = [];
foreach ($chunks as $chunk) {
// filter out chunks the user is not allowed to read
if ($auth && auth_quickaclcheck($chunk->getPage()) < AUTH_READ) continue;
if ($chunk->getScore() < $this->similarityThreshold) continue;
$chunkSize = count($this->getTokenEncoder()->encode($chunk->getText()));
if ($size + $chunkSize > $this->chatModel->getMaxInputTokenLength()) break; // we have enough
$result[] = $chunk;
$size += $chunkSize;
}
return $result;
}
/**
* Create a breadcrumb trail for the given page
*
* Uses the first heading of each namespace and the page itself. This is added as a prefix to
* each chunk to give the AI some context.
*
* @param string $id
* @return string
*/
protected function breadcrumbTrail($id)
{
$namespaces = explode(':', getNS($id));
$resolver = new PageResolver($id);
$crumbs = [];
// all namespaces
$check = '';
foreach ($namespaces as $namespace) {
$check .= $namespace . ':';
$page = $resolver->resolveId($check);
$title = p_get_first_heading($page);
$crumbs[] = $title ? "$title ($namespace)" : $namespace;
}
// the page itself
$title = p_get_first_heading($id);
$page = noNS($id);
$crumbs[] = $title ? "$title ($page)" : $page;
return implode(' » ', $crumbs);
}
/**
* @param $text
* @return array
* @throws \Exception
* @todo support splitting too long sentences
*/
protected function splitIntoChunks($text)
{
$sentenceSplitter = new Sentence();
$tiktok = $this->getTokenEncoder();
$chunks = [];
$sentences = $sentenceSplitter->split($text);
$chunklen = 0;
$chunk = '';
while ($sentence = array_shift($sentences)) {
$slen = count($tiktok->encode($sentence));
if ($slen > $this->getChunkSize()) {
// sentence is too long, we need to split it further
if ($this->logger instanceof CLI) $this->logger->warning(
'Sentence too long, splitting not implemented yet'
);
continue;
}
if ($chunklen + $slen < $this->getChunkSize()) {
// add to current chunk
$chunk .= $sentence;
$chunklen += $slen;
// remember sentence for overlap check
$this->rememberSentence($sentence);
} else {
// add current chunk to result
$chunk = trim($chunk);
if ($chunk !== '') $chunks[] = $chunk;
// start new chunk with remembered sentences
$chunk = implode(' ', $this->sentenceQueue);
$chunk .= $sentence;
$chunklen = count($tiktok->encode($chunk));
}
}
$chunks[] = $chunk;
return $chunks;
}
/**
* Add a sentence to the queue of remembered sentences
*
* @param string $sentence
* @return void
*/
protected function rememberSentence($sentence)
{
// add sentence to queue
$this->sentenceQueue[] = $sentence;
// remove oldest sentences from queue until we are below the max overlap
$encoder = $this->getTokenEncoder();
while (count($encoder->encode(implode(' ', $this->sentenceQueue))) > self::MAX_OVERLAP_LEN) {
array_shift($this->sentenceQueue);
}
}
}