-
Notifications
You must be signed in to change notification settings - Fork 10
/
base_options.py
222 lines (192 loc) · 9.71 KB
/
base_options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import argparse
import os
import re
from util import util
import torch
import models
import time
def str2bool(v):
return v.lower() in ('yes', 'y', 'true', 't', '1')
inf = float('inf')
class BaseOptions():
def __init__(self):
"""Reset the class; indicates the class hasn't been initailized"""
self.initialized = False
def initialize(self, parser):
"""Define the common options that are used in both training and test."""
# data parameters
parser.add_argument('--dataroot', type=str, default='')
parser.add_argument('--dataset_name', type=str, default=['eth'], nargs='+')
parser.add_argument('--max_dataset_size', type=int, default=inf)
parser.add_argument('--scale', type=int, default=4, help='Super-resolution scale.')
parser.add_argument('--mode', default='RGB', choices=['RGB', 'L', 'Y'],
help='Currently, only RGB mode is supported.')
parser.add_argument('--imlib', default='cv2', choices=['cv2', 'pillow'],
help='Keep using cv2 unless encountered with problems.')
# parser.add_argument('--preload', type=str2bool, default=True,
# help='Load all images into memory for efficiency.')
# parser.add_argument('--multi_imreader', type=str2bool, default=True,
# help='Use multiple cores/threads to load images, will be very '
# 'fast when the images are loaded into cache.')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--patch_size', type=int, default=224)
parser.add_argument('--shuffle', type=str2bool, default=True)
parser.add_argument('-j', '--num_dataloader', default=4, type=int)
parser.add_argument('--drop_last', type=str2bool, default=True)
# device parameters
parser.add_argument('--gpu_ids', type=str, default='all',
help='Separate the GPU ids by `,`, using all GPUs by default. '
'eg, `--gpu_ids 0`, `--gpu_ids 2,3`, `--gpu_ids -1`(CPU)')
parser.add_argument('--checkpoints_dir', type=str, default='./ckpt')
parser.add_argument('-v', '--verbose', type=str2bool, default=True)
parser.add_argument('--suffix', default='', type=str)
# model parameters
parser.add_argument('--name', type=str, required=True,
help='Name of the folder to save models and logs.')
parser.add_argument('--model', type=str, required=True)
parser.add_argument('--load_path', type=str, default='',
help='Will load pre-trained model if load_path is set')
parser.add_argument('--load_iter', type=int, default=[0], nargs='+',
help='Load parameters if > 0 and load_path is not set. '
'Set the value of `last_epoch`')
parser.add_argument('--gcm_coord', type=str2bool, default=True)
parser.add_argument('--pre_ispnet_coord', type=str2bool, default=True)
parser.add_argument('--chop', type=str2bool, default=False)
# training parameters
parser.add_argument('--init_type', type=str, default='default',
choices=['default', 'normal', 'xavier',
'kaiming', 'orthogonal', 'uniform'],
help='`default` means using PyTorch default init functions.')
parser.add_argument('--init_gain', type=float, default=0.02)
# parser.add_argument('--loss', type=str, default='L1',
# help='choose from [L1, MSE, SSIM, VGG, PSNR]')
parser.add_argument('--optimizer', type=str, default='Adam',
choices=['Adam', 'SGD', 'RMSprop'])
parser.add_argument('--niter', type=int, default=1000)
parser.add_argument('--niter_decay', type=int, default=0)
parser.add_argument('--lr_policy', type=str, default='step')
parser.add_argument('--lr_decay_iters', type=int, default=200)
parser.add_argument('--lr', type=float, default=0.0001)
# Optimizer
parser.add_argument('--load_optimizers', type=str2bool, default=False,
help='Loading optimizer parameters for continuing training.')
parser.add_argument('--weight_decay', type=float, default=0)
# Adam
parser.add_argument('--beta1', type=float, default=0.9)
parser.add_argument('--beta2', type=float, default=0.999)
# SGD & RMSprop
parser.add_argument('--momentum', type=float, default=0)
# RMSprop
parser.add_argument('--alpha', type=float, default=0.99)
# visualization parameters
parser.add_argument('--print_freq', type=int, default=100)
parser.add_argument('--test_every', type=int, default=1000)
parser.add_argument('--save_epoch_freq', type=int, default=1)
parser.add_argument('--calc_metrics', type=str2bool, default=False)
parser.add_argument('--save_imgs', type=str2bool, default=False)
parser.add_argument('--visual_full_imgs', type=str2bool, default=False)
self.initialized = True
return parser
def gather_options(self):
"""Initialize our parser with basic options(only once).
Add additional model-specific and dataset-specific options.
These options are difined in the <modify_commandline_options> function
in model and dataset classes.
"""
if not self.initialized: # check if it has been initialized
parser = argparse.ArgumentParser(formatter_class=
argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# get the basic options
opt, _ = parser.parse_known_args()
# modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
opt, _ = parser.parse_known_args() # parse again with new defaults
# save and return the parser
self.parser = parser
return parser.parse_args()
def print_options(self, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, 'opt_%s.txt'
% ('train' if self.isTrain else 'test'))
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
def parse(self):
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
opt.serial_batches = not opt.shuffle
if self.isTrain and (opt.load_iter != [0] or opt.load_path != '') \
and not opt.load_optimizers:
util.prompt('You are loading a checkpoint and continuing training, '
'and no optimizer parameters are loaded. Please make '
'sure that the hyper parameters are correctly set.', 80)
time.sleep(3)
if opt.mode == 'RGB':
opt.input_nc = opt.output_nc = 3
else: # mode = 'L' or 'Y'
opt.input_nc = opt.output_nc = 1
opt.model = opt.model.lower()
opt.name = opt.name.lower()
scale_patch = {2: 96, 3: 144, 4: 192}
if opt.patch_size is None:
opt.patch_size = scale_patch[opt.scale]
if opt.name.startswith(opt.checkpoints_dir):
opt.name = opt.name.replace(opt.checkpoints_dir+'/', '')
if opt.name.endswith('/'):
opt.name = opt.name[:-1]
if len(opt.dataset_name) == 1:
opt.dataset_name = opt.dataset_name[0]
if len(opt.load_iter) == 1:
opt.load_iter = opt.load_iter[0]
# process opt.suffix
if opt.suffix != '':
suffix = ('_' + opt.suffix.format(**vars(opt)))
opt.name = opt.name + suffix
self.print_options(opt)
# set gpu ids
cuda_device_count = torch.cuda.device_count()
if opt.gpu_ids == 'all':
# GT 710 (3.5), GT 610 (2.1)
gpu_ids = [i for i in range(cuda_device_count)]
else:
p = re.compile('[^-0-9]+')
gpu_ids = [int(i) for i in re.split(p, opt.gpu_ids) if int(i) >= 0]
opt.gpu_ids = [i for i in gpu_ids \
if torch.cuda.get_device_capability(i) >= (4,0)]
if len(opt.gpu_ids) == 0 and len(gpu_ids) > 0:
opt.gpu_ids = gpu_ids
util.prompt('You\'re using GPUs with computing capability < 4')
elif len(opt.gpu_ids) != len(gpu_ids):
util.prompt('GPUs(computing capability < 4) have been disabled')
if len(opt.gpu_ids) > 0:
assert torch.cuda.is_available(), 'No cuda available !!!'
torch.cuda.set_device(opt.gpu_ids[0])
print('The GPUs you are using:')
for gpu_id in opt.gpu_ids:
print(' %2d *%s* with capability %d.%d' % (
gpu_id,
torch.cuda.get_device_name(gpu_id),
*torch.cuda.get_device_capability(gpu_id)))
else:
util.prompt('You are using CPU mode')
self.opt = opt
return self.opt