-
Notifications
You must be signed in to change notification settings - Fork 44
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
extract_feat函数加载问题 #54
Comments
我也遇到了这个问题,并且也是相同的解决方法。之前初始化在init里面无法反向传播 |
但是这样训练后保存的中间增强的图像,可视化实际上和作者论文呈现的差别很大 |
十分感谢耐心纠正,因为代码失误对您的结论造成困扰,这部分的实验我后面重新跑一遍,并且更新一下结果参数。 |
好的,这个问题也引发了这个问题打断点在init才有效 |
可是为什么无法反向传播,依然能够复现出较高的mAP呢? |
YOLOV3的基础性能就挺好的,可能由于随机性,作者跑出来的性能比较好。 |
作者您好,请问您更新新的代码和实验结果了吗? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://github.com/cuiziteng/Illumination-Adaptive-Transformer/blob/main/IAT_high/IAT_mmdetection/mmdet/models/detectors/IAT_detector/IAT_yolo.py
extract_feat函数和forward_train只初始化在init函数里面,实际上是不能够被反向传播的,我在extract_feat加了一行打印函数,训练过程中并没有打印。将extract_feat函数和forward_train移出init函数,作为IAT_yolo的成员函数,实际上是重写SingleStageDetecto的函数,这样extract_feat才会参与反向传播,打印日志。或者是我理解错了,请作者耐心解答一下。
The text was updated successfully, but these errors were encountered: