Skip to content

Latest commit

 

History

History
127 lines (96 loc) · 8.53 KB

README.md

File metadata and controls

127 lines (96 loc) · 8.53 KB

Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment

Paper | Github | Dataset | Model

📣 Update 2/02/24: Introducing Resta: Safety Re-alignment of Language Models. Paper Github Dataset

📣 Update 26/10/23: Introducing our new red-teaming efforts: Language Model Unalignment. Link

As a part of our efforts to make LLMs safer for public use, we provide:

  • Code to evaluate LLM safety against Chain of Utterances (CoU) based prompts-referred to as RedEval benchmark Image

  • Code to perform safety alignment of Vicuna-7B on HarmfulQA, with this we obtain a safer version of Vicuna which is more robust against RedEval. Please check out our Starling.

Red-Eval Benchmark

Simple scripts to evaluate closed-source systems (ChatGPT, GPT4) and open-source LLMs on our benchmark red-eval.

To compute Attack Success Rate (ASR) Red-Eval uses two question-bank consisting of harmful questions:

  • HarmfulQA (1,960 harmful questions covering 10 topics and ~10 subtopics each)
  • DangerousQA (200 harmful questions across 6 adjectives—racist, stereotypical, sexist, illegal, toxic, and harmful)
  • CategoricalQA (11 categories of harm, each with 5 sub-categories. Available in English, Chinese, and Vietnamese)
  • AdversarialQA (a set of 500 instructions to tease out harmful behaviors from the model)

Installation

conda create --name redeval -c conda-forge python=3.11
conda activate redeval
pip install -r requirements.txt
conda install sentencepiece

Store your API keys in api_keys directory! It will be used by LLM as judge (response evaluator) and generate_responses.py for closed-source models.

How to perform red-teaming

  • Step-0: Decide which prompt template you want to use for red-teaming. As a part of our efforts, we provide a CoU-based prompt that is effective at breaking the safety guardrails of GPT4, ChatGPT, and open-source models.

  • Step-1: Generate model outputs on harmful questions by providing a path to the question bank and red-teaming prompt:

    Closed-source models:

  #OpenAI
  python generate_responses.py --model "gpt4" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json
  python generate_responses.py --model "chatgpt" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json

  #Claude Models
  python generate_responses.py --model "claude-3-opus-20240229" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json
  python generate_responses.py --model "claude-3-sonnet-20240229" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json
  python generate_responses.py --model "claude-2.1" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json
  python generate_responses.py --model "claude-2.0" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json 

Open-source models:

  #Llama-2
  python generate_responses.py --model "meta-llama/Llama-2-7b-chat-hf" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json

  #Mistral
  python generate_responses.py --model "mistralai/Mistral-7B-Instruct-v0.2" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json

  #Vicuna
  python generate_responses.py --model "lmsys/vicuna-7b-v1.3" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json

To load models in 8-bit, we can specify --load_8bit as follows

  python generate_responses.py --model "meta-llama/Llama-2-7b-chat-hf" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json --load_8bit

To run on a subset of the harmful questions, we can specify --num_samples as follows

  python generate_responses.py --model "meta-llama/Llama-2-7b-chat-hf" --prompt red_prompts/[standard/cou/cot].txt --dataset harmful_questions/dangerousqa.json --num_samples 10
  • Step-2: Annotate the generated responses using gpt4-as-a-judge:
python gpt4_as_judge.py --response_file results/dangerousqa_gpt4_cou.json --save_path results

Results

Attack Success Rate (ASR) of different red-teaming attempts.

Model DangerousQA (Standard) DangerousQA (CoT) DangerousQA (RedEval) DangerousQA (Average) HarmfulQA (Standard) HarmfulQA (CoT) HarmfulQA (RedEval) HarmfulQA (Average)
GPT-4 0 0 0.651 0.217 0 0.004 0.612 0.206
ChatGPT 0 0.005 0.728 0.244 0.018 0.027 0.728 0.257
Vicuna-13B 0.027 0.490 0.835 0.450 - - - -
Vicuna-7B 0.025 0.532 0.875 0.477 - - - -
StableBeluga-13B 0.026 0.630 0.915 0.523 - - - -
StableBeluga-7B 0.102 0.755 0.915 0.590 - - - -
Vicuna-FT-7B 0.095 0.465 0.860 0.473 - - - -
Llama2-FT-7B 0.722 0.860 0.896 0.826 - - - -
Starling (Blue) 0.015 0.485 0.765 0.421 - - - -
Starling (Blue-Red) 0.050 0.570 0.855 0.492 - - - -
Average 0.116 0.479 0.830 0.471 0.010 0.016 0.67 0.232

Citation

@misc{bhardwaj2023redteaming,
      title={Red-Teaming Large Language Models using Chain of Utterances for Safety-Alignment}, 
      author={Rishabh Bhardwaj and Soujanya Poria},
      year={2023},
      eprint={2308.09662},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

@misc{bhardwaj2024language,
      title={Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic}, 
      author={Rishabh Bhardwaj and Do Duc Anh and Soujanya Poria},
      year={2024},
      eprint={2402.11746},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}