-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
56 lines (43 loc) · 1.63 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import requests
import streamlit as st
import pickle
import pandas as pd
def fetch_poster(movie_id):
response =requests.get('https://api.themoviedb.org/3/movie/{}?api_key=7ab21b4720d7e5c89f9a3e244f3bf4f6&language=en-US'.format(movie_id))
data =response.json()
return "https://image.tmdb.org/t/p/w500/"+ data['poster_path']
def recommend(movie):
movie_index = movies[movies['title'] == movie].index[0]
distances = similarity[movie_index]
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
recommended_movies = []
recommended_movies_posters = []
for i in movies_list:
movie_id = movies.iloc[i[0]].movie_id
# fetch poster from api
recommended_movies.append(movies.iloc[i[0]].title)
recommended_movies_posters.append(fetch_poster(movie_id))
return recommended_movies,recommended_movies_posters
movies_dict = pickle.load(open('movie_dict.pkl', 'rb'))
movies = pd.DataFrame(movies_dict)
similarity = pickle.load(open('similarity.pkl', 'rb'))
st.title('Movie Recommender System')
selected_movie_name = st.selectbox('What is your favourite movie?', movies['title'].values)
if st.button('Recommend'):
names,posters = recommend(selected_movie_name)
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
st.text(names[0])
st.image(posters[0])
with col2:
st.text(names[1])
st.image(posters[1])
with col3:
st.text(names[2])
st.image(posters[2])
with col4:
st.text(names[3])
st.image(posters[3])
with col5:
st.text(names[4])
st.image(posters[4])