-
Notifications
You must be signed in to change notification settings - Fork 17
/
_pkgdown.yml
155 lines (134 loc) · 3.61 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
url: https://dmphillippo.github.io/multinma
home:
title: Bayesian network meta-analysis of individual and aggregate data
description: >
multinma is an R package for network meta-analysis and (multilevel) network
meta-regression of aggregate data, individual patient data, and mixtures of
both. Models are estimated in a Bayesian framework using Stan.
template:
bootstrap: 5
bslib:
base_font: {google: "Source Sans Pro"}
heading_font: {google: "Source Sans Pro"}
#code_font: {google: "JetBrains Mono"}
includes:
after_body: >
<script data-goatcounter="https://multinma.goatcounter.com/count" async src="//gc.zgo.at/count.js"></script>
development:
mode: auto
articles:
- title: Overview of Examples
navbar: ~
contents:
- vignette_overview
- title: Examples
navbar: Examples
contents: starts_with("example_")
reference:
- title: Package overview
contents:
- multinma-package
- title: Defining a network
desc: Setting up a network from different data sources, creating network plots.
contents:
- starts_with("set_")
- combine_network
- multi
- print.nma_data
- plot.nma_data
- as.igraph.nma_data
- nma_data-class
- is_network_connected
- title: Setting up numerical integration (ML-NMR only)
desc: >
Multilevel network meta-regression models require numerical integration
points to be specified for the distributions of covariates in each aggregate
data study in the network.
contents:
- add_integration
- unnest_integration
- distr
- matches("[pdq]bern")
- matches("[pdq]gamma")
- matches("[pdq]gent")
- matches("[pdq]logt")
- matches("[pdq]logitnorm")
- title: Prior distributions
desc: Specify and summarise prior distributions.
contents:
- priors
- summary.nma_prior
- nma_prior-class
- plot_prior_posterior
- matches("[pdq]gent")
- matches("[pdq]logt")
- title: Model fitting
desc: Model specification and fitting is accomplished using the `nma()` function.
contents:
- nma
- print.stan_nma
- summary.stan_nma
- plot.stan_nma
- pairs.stan_nma
- stan_nma-class
- adapt_delta
- which_RE
- RE_cor
- .default
- title: Model checking and comparison
desc: Checking model fit and comparing models.
contents:
- plot_prior_posterior
- plot_integration_error
- dic
- print.nma_dic
- plot.nma_dic
- nma_dic-class
- loo
- waic
- title: Node-splitting
desc: Generate and summarise node-splitting models for assessing inconsistency.
contents:
- has_direct
- has_indirect
- get_nodesplits
- nma_nodesplit-class
- print.nma_nodesplit_df
- summary.nma_nodesplit_df
- nodesplit_summary-class
- print.nodesplit_summary
- plot.nodesplit_summary
- title: Posterior summaries and working with fitted models
desc: >
Producing and plotting relative effects, absolute predictions, marginal
effects, posterior ranks and rank probabilities. Converting to MCMC arrays
and matrices.
contents:
- relative_effects
- marginal_effects
- predict.stan_nma
- posterior_ranks
- posterior_rank_probs
- print.nma_summary
- plot.nma_summary
- nma_summary-class
- as.array.stan_nma
- mcmc_array-class
- as.matrix.stan_nma
- as.stanfit.stan_nma
- title: M-spline hazards
desc: Functions for flexibile M-splines on the baseline hazard.
contents:
- matches("[pdqhH]mspline")
- rmst_mspline
- make_knots
- title: ggplot functions
desc: Functions for creating or customising ggplot outputs.
contents:
- theme_multinma
- geom_km
- title: Datasets
desc: Datasets used for examples and vignettes.
contents:
- has_keyword("datasets")
- has_keyword("examples")