comments | edit_url |
---|---|
true |
给定一个非空的正整数数组 nums
,请判断能否将这些数字分成元素和相等的两部分。
示例 1:
输入:nums = [1,5,11,5] 输出:true 解释:nums 可以分割成 [1, 5, 5] 和 [11] 。
示例 2:
输入:nums = [1,2,3,5] 输出:false 解释:nums 不可以分为和相等的两部分
提示:
1 <= nums.length <= 200
1 <= nums[i] <= 100
注意:本题与主站 416 题相同: https://leetcode.cn/problems/partition-equal-subset-sum/
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
m, n = len(nums), (s >> 1) + 1
dp = [[False] * n for _ in range(m)]
for i in range(m):
dp[i][0] = True
if nums[0] < n:
dp[0][nums[0]] = True
for i in range(1, m):
for j in range(n):
dp[i][j] = dp[i - 1][j]
if not dp[i][j] and nums[i] <= j:
dp[i][j] = dp[i - 1][j - nums[i]]
return dp[-1][-1]
class Solution {
public boolean canPartition(int[] nums) {
int s = 0;
for (int x : nums) {
s += x;
}
if (s % 2 != 0) {
return false;
}
int m = nums.length, n = (s >> 1) + 1;
boolean[] dp = new boolean[n];
dp[0] = true;
if (nums[0] < n) {
dp[nums[0]] = true;
}
for (int i = 1; i < m; ++i) {
for (int j = n - 1; j >= nums[i]; --j) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[n - 1];
}
}
class Solution {
public:
bool canPartition(vector<int>& nums) {
int s = 0;
for (int x : nums) s += x;
if (s % 2 != 0) return false;
int m = nums.size(), n = (s >> 1) + 1;
vector<bool> dp(n);
dp[0] = true;
if (nums[0] < n) dp[nums[0]] = true;
for (int i = 1; i < m; ++i) {
for (int j = n - 1; j >= nums[i]; --j) {
dp[j] = dp[j] || dp[j - nums[i]];
}
}
return dp[n - 1];
}
};
func canPartition(nums []int) bool {
s := 0
for _, x := range nums {
s += x
}
if s%2 != 0 {
return false
}
m, n := len(nums), (s>>1)+1
dp := make([]bool, n)
dp[0] = true
if nums[0] < n {
dp[nums[0]] = true
}
for i := 1; i < m; i++ {
for j := n - 1; j >= nums[i]; j-- {
dp[j] = dp[j] || dp[j-nums[i]]
}
}
return dp[n-1]
}
class Solution {
func canPartition(_ nums: [Int]) -> Bool {
let s = nums.reduce(0, +)
if s % 2 != 0 { return false }
let target = s / 2
var dp = Array(repeating: false, count: target + 1)
dp[0] = true
for num in nums {
for j in stride(from: target, through: num, by: -1) {
dp[j] = dp[j] || dp[j - num]
}
}
return dp[target]
}
}
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
m, n = len(nums), (s >> 1) + 1
dp = [False] * n
dp[0] = True
if nums[0] < n:
dp[nums[0]] = True
for i in range(1, m):
for j in range(n - 1, nums[i] - 1, -1):
dp[j] = dp[j] or dp[j - nums[i]]
return dp[-1]
class Solution:
def canPartition(self, nums: List[int]) -> bool:
s = sum(nums)
if s % 2 != 0:
return False
target = s >> 1
@cache
def dfs(i, s):
nonlocal target
if s > target or i >= len(nums):
return False
if s == target:
return True
return dfs(i + 1, s) or dfs(i + 1, s + nums[i])
return dfs(0, 0)