-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
92 lines (69 loc) · 2.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import io
import os
import time
# Import the necessary 3d-party Python packages
# NOTE: These packages reside on the RPI0
# Assuming you followed the README,
# you should be able to ctrl+click the packages as if they
# were installed locally
import picamera
from cv2 import cv2
import numpy as np
from tflite_micro_runtime.interpreter import Interpreter
from tflite_micro_runtime.image_transform import ImageTransformer
curdir = os.path.dirname(os.path.abspath(__file__))
def main():
model_path = f'{curdir}/trained_model.tflite'
# Local the model into the interpreter
interpreter = Interpreter(model_path)
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()[0]
output_details = interpreter.get_output_details()[0]
_, height, width, _ = input_details['shape']
input_index = input_details['index']
output_index = output_details['index']
roi_w, roi_h = 128,128
# This will perform a perspective transform
# then standardize the image
# NOTE: In practice, the src_points should points to a
# polygon within the image
img_xfrm = ImageTransformer(
src_points=[[0, 0], [roi_w, 0], [roi_w-1, roi_h-1], [0, roi_h-1]],
dst_size=(width,height),
standardize=True
)
with picamera.PiCamera(resolution=(640, 480), framerate=43) as camera:
camera.start_preview()
try:
x = 100/640
y = 100/480
w = 200/640
h = 115/480
camera.zoom = x, y, w, h
stream = io.BytesIO()
for _ in camera.capture_continuous(
stream, format='jpeg', use_video_port=True):
stream.seek(0)
# Read the image into a buffer
im_buf = np.frombuffer(stream.read(), np.uint8)
# Convert the image from JPG to numpy
im = cv2.imdecode(im_buf, cv2.IMREAD_COLOR)
# print(f'shape={im.shape} zoom={camera.zoom}')
# Perform a perspective transform on the image
# then standardize the image
x = img_xfrm.invoke(im)
x = np.expand_dims(x, 0)
input_tensor = interpreter.tensor(input_index)()[0]
np.copyto(input_tensor, x)
input_tensor = None
start_time = time.time()
interpreter.invoke()
output = np.squeeze(interpreter.get_tensor(output_index))
elapsed_ms = (time.time() - start_time) * 1000
print(f'({elapsed_ms:.4f}) {output}')
stream.seek(0)
stream.truncate()
finally:
camera.stop_preview()
if __name__ == '__main__':
main()