-
Notifications
You must be signed in to change notification settings - Fork 50
/
predict.py
141 lines (114 loc) · 4.52 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import importlib
import os
import sys
import time
import numpy as np
import scipy
import provider
import tensorflow as tf
import matplotlib.pyplot as plt
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(BASE_DIR, 'models'))
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0,
help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='nvidia_pn',
help='Model name [default: nvidia_pn]')
parser.add_argument('--model_path', default='logs/nvidia_pn/model.ckpt',
help='Model checkpoint file path [default: logs/nvidia_pn/model.ckpt]')
parser.add_argument('--max_epoch', type=int, default=250,
help='Epoch to run [default: 250]')
parser.add_argument('--batch_size', type=int, default=8,
help='Batch Size during training [default: 8]')
parser.add_argument('--result_dir', default='results',
help='Result folder path [results]')
FLAGS = parser.parse_args()
BATCH_SIZE = FLAGS.batch_size
GPU_INDEX = FLAGS.gpu
MODEL_PATH = FLAGS.model_path
assert (FLAGS.model == "nvidia_pn")
MODEL = importlib.import_module(FLAGS.model) # import network module
MODEL_FILE = os.path.join(BASE_DIR, 'models', FLAGS.model+'.py')
RESULT_DIR = os.path.join(FLAGS.result_dir, FLAGS.model)
if not os.path.exists(RESULT_DIR):
os.makedirs(RESULT_DIR)
LOG_FOUT = open(os.path.join(RESULT_DIR, 'log_predict.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def predict():
with tf.device('/gpu:'+str(GPU_INDEX)):
if 'pn' in MODEL_FILE:
data_input = provider.Provider()
imgs_pl, pts_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE)
imgs_pl = [imgs_pl, pts_pl]
else:
raise NotImplementedError
is_training_pl = tf.placeholder(tf.bool, shape=())
print(is_training_pl)
# Get model and loss
pred = MODEL.get_model(imgs_pl, is_training_pl)
loss = MODEL.get_loss(pred, labels_pl)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = True
sess = tf.Session(config=config)
# Restore variables from disk.
saver.restore(sess, MODEL_PATH)
log_string("Model restored.")
ops = {'imgs_pl': imgs_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss}
pred_one_epoch(sess, ops, data_input)
def pred_one_epoch(sess, ops, data_input):
""" ops: dict mapping from string to tf ops """
is_training = False
preds = []
num_batches = data_input.num_test // BATCH_SIZE
for batch_idx in range(num_batches):
if "io" in MODEL_FILE:
imgs = data_input.load_one_batch(BATCH_SIZE, "test")
feed_dict = {ops['imgs_pl']: imgs,
ops['is_training_pl']: is_training}
else:
imgs, others = data_input.load_one_batch(BATCH_SIZE, "test")
feed_dict = {ops['imgs_pl'][0]: imgs,
ops['imgs_pl'][1]: others,
ops['is_training_pl']: is_training}
pred_val = sess.run(ops['pred'], feed_dict=feed_dict)
preds.append(pred_val)
preds = np.vstack(preds)
print (preds.shape)
# preds[:, 1] = preds[:, 1] * 180.0 / scipy.pi
# preds[:, 0] = preds[:, 0] * 20 + 20
np.savetxt(os.path.join(RESULT_DIR, "behavior_pred.txt"), preds)
output_dir = os.path.join(RESULT_DIR, "results")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
i_list = get_dicts(description="test")
counter = 0
for i, num in enumerate(i_list):
np.savetxt(os.path.join(output_dir, str(i) + ".txt"), preds[counter:counter+num,:])
counter += num
# plot_acc(preds, labels)
def get_dicts(description="val"):
if description == "train":
raise NotImplementedError
elif description == "val": # batch_size == 8
return [120] * 4 + [111] + [120] * 4 + [109] + [120] * 9 + [89 - 87 % 8]
elif description == "test": # batch_size == 8
return [120] * 9 + [116] + [120] * 4 + [106] + [120] * 4 + [114 - 114 % 8]
else:
raise NotImplementedError
if __name__ == "__main__":
predict()
# plot_acc_from_txt()