Skip to content

Latest commit

 

History

History
81 lines (44 loc) · 1.98 KB

README.md

File metadata and controls

81 lines (44 loc) · 1.98 KB

BSD-GAN

Tensorflow implementation of BSD-GAN

BSD-GAN demo

BSD-GAN paper

paper

please cite the paper, if the codes/dataset has been used for your research.

results of BSD-GAN

Scale-aware fusion

How to setup

Prerequisites

  • Python (2.7 or later)

  • numpy

  • scipy

  • NVIDIA GPU + CUDA 8.0 + CuDNN v5.1

  • TensorFlow 1.0 or later

Getting Started

steps

  • clone this repo:
git clone https://github.com/duxingren14/BSD-GAN.git

cd BSD-GAN

mkdir data
  • download datasets (e.g., car) from google drive and put it in ./data/.

./BSD-GAN/data/car_400x300/*.jpg

  • train the model:
python main.py --phase train --dataset_name car_400x300 --input_height 300 --input_width 400 --epoch 45
  • test the model:
python main.py --phase train --dataset_name car_400x300 --input_height 300 --input_width 400 --epoch 45 --train False

other datasets

some datasets can be downloaded from the website. Please cite their papers if you use the data.

celebahq: https://github.com/tkarras/progressive_growing_of_gans

lsun: http://lsun.cs.princeton.edu/2017/

Experimental results:

celeba_hq256 celeba_hq512 car_400x300 lsun church_outdoor

Acknowledgments

Codes are built on the top of DCGAN tensorflow and progressive growing. Thanks for their precedent contributions!