-
Notifications
You must be signed in to change notification settings - Fork 22
/
avl_tree.c
789 lines (708 loc) · 23 KB
/
avl_tree.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*
* avl_tree.c - intrusive, nonrecursive AVL tree data structure (self-balancing
* binary search tree), implementation file
*
* Written in 2014-2016 by Eric Biggers <ebiggers3@gmail.com>
*
* To the extent possible under law, the author(s) have dedicated all copyright
* and related and neighboring rights to this software to the public domain
* worldwide via the Creative Commons Zero 1.0 Universal Public Domain
* Dedication (the "CC0").
*
* This software is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the CC0 for more details.
*
* You should have received a copy of the CC0 along with this software; if not
* see <http://creativecommons.org/publicdomain/zero/1.0/>.
*/
#include "avl_tree.h"
/* Returns the left child (sign < 0) or the right child (sign > 0) of the
* specified AVL tree node.
* Note: for all calls of this, 'sign' is constant at compilation time,
* so the compiler can remove the conditional. */
static AVL_INLINE struct avl_tree_node *
avl_get_child(const struct avl_tree_node *parent, int sign)
{
if (sign < 0)
return parent->left;
else
return parent->right;
}
static AVL_INLINE struct avl_tree_node *
avl_tree_first_or_last_in_order(const struct avl_tree_node *root, int sign)
{
const struct avl_tree_node *first = root;
if (first)
while (avl_get_child(first, +sign))
first = avl_get_child(first, +sign);
return (struct avl_tree_node *)first;
}
/* Starts an in-order traversal of the tree: returns the least-valued node, or
* NULL if the tree is empty. */
struct avl_tree_node *
avl_tree_first_in_order(const struct avl_tree_node *root)
{
return avl_tree_first_or_last_in_order(root, -1);
}
/* Starts a *reverse* in-order traversal of the tree: returns the
* greatest-valued node, or NULL if the tree is empty. */
struct avl_tree_node *
avl_tree_last_in_order(const struct avl_tree_node *root)
{
return avl_tree_first_or_last_in_order(root, 1);
}
static AVL_INLINE struct avl_tree_node *
avl_tree_next_or_prev_in_order(const struct avl_tree_node *node, int sign)
{
const struct avl_tree_node *next;
if (avl_get_child(node, +sign))
for (next = avl_get_child(node, +sign);
avl_get_child(next, -sign);
next = avl_get_child(next, -sign))
;
else
for (next = avl_get_parent(node);
next && node == avl_get_child(next, +sign);
node = next, next = avl_get_parent(next))
;
return (struct avl_tree_node *)next;
}
/* Continues an in-order traversal of the tree: returns the next-greatest-valued
* node, or NULL if there is none. */
struct avl_tree_node *
avl_tree_next_in_order(const struct avl_tree_node *node)
{
return avl_tree_next_or_prev_in_order(node, 1);
}
/* Continues a *reverse* in-order traversal of the tree: returns the
* previous-greatest-valued node, or NULL if there is none. */
struct avl_tree_node *
avl_tree_prev_in_order(const struct avl_tree_node *node)
{
return avl_tree_next_or_prev_in_order(node, -1);
}
/* Starts a postorder traversal of the tree. */
struct avl_tree_node *
avl_tree_first_in_postorder(const struct avl_tree_node *root)
{
const struct avl_tree_node *first = root;
if (first)
while (first->left || first->right)
first = first->left ? first->left : first->right;
return (struct avl_tree_node *)first;
}
/* Continues a postorder traversal of the tree. @prev will not be deferenced as
* it's allowed that its memory has been freed; @prev_parent must be its saved
* parent node. Returns NULL if there are no more nodes (i.e. @prev was the
* root of the tree). */
struct avl_tree_node *
avl_tree_next_in_postorder(const struct avl_tree_node *prev,
const struct avl_tree_node *prev_parent)
{
const struct avl_tree_node *next = prev_parent;
if (next && prev == next->left && next->right)
for (next = next->right;
next->left || next->right;
next = next->left ? next->left : next->right)
;
return (struct avl_tree_node *)next;
}
/* Sets the left child (sign < 0) or the right child (sign > 0) of the
* specified AVL tree node.
* Note: for all calls of this, 'sign' is constant at compilation time,
* so the compiler can remove the conditional. */
static AVL_INLINE void
avl_set_child(struct avl_tree_node *parent, int sign,
struct avl_tree_node *child)
{
if (sign < 0)
parent->left = child;
else
parent->right = child;
}
/* Sets the parent and balance factor of the specified AVL tree node. */
static AVL_INLINE void
avl_set_parent_balance(struct avl_tree_node *node, struct avl_tree_node *parent,
int balance_factor)
{
node->parent_balance = (uintptr_t)parent | (balance_factor + 1);
}
/* Sets the parent of the specified AVL tree node. */
static AVL_INLINE void
avl_set_parent(struct avl_tree_node *node, struct avl_tree_node *parent)
{
node->parent_balance = (uintptr_t)parent | (node->parent_balance & 3);
}
/* Returns the balance factor of the specified AVL tree node --- that is, the
* height of its right subtree minus the height of its left subtree. */
static AVL_INLINE int
avl_get_balance_factor(const struct avl_tree_node *node)
{
return (int)(node->parent_balance & 3) - 1;
}
/* Adds @amount to the balance factor of the specified AVL tree node.
* The caller must ensure this still results in a valid balance factor
* (-1, 0, or 1). */
static AVL_INLINE void
avl_adjust_balance_factor(struct avl_tree_node *node, int amount)
{
node->parent_balance += amount;
}
static AVL_INLINE void
avl_replace_child(struct avl_tree_node **root_ptr,
struct avl_tree_node *parent,
struct avl_tree_node *old_child,
struct avl_tree_node *new_child)
{
if (parent) {
if (old_child == parent->left)
parent->left = new_child;
else
parent->right = new_child;
} else {
*root_ptr = new_child;
}
}
/*
* Template for performing a single rotation ---
*
* sign > 0: Rotate clockwise (right) rooted at A:
*
* P? P?
* | |
* A B
* / \ / \
* B C? => D? A
* / \ / \
* D? E? E? C?
*
* (nodes marked with ? may not exist)
*
* sign < 0: Rotate counterclockwise (left) rooted at A:
*
* P? P?
* | |
* A B
* / \ / \
* C? B => A D?
* / \ / \
* E? D? C? E?
*
* This updates pointers but not balance factors!
*/
static AVL_INLINE void
avl_rotate(struct avl_tree_node ** const root_ptr,
struct avl_tree_node * const A, const int sign)
{
struct avl_tree_node * const B = avl_get_child(A, -sign);
struct avl_tree_node * const E = avl_get_child(B, +sign);
struct avl_tree_node * const P = avl_get_parent(A);
avl_set_child(A, -sign, E);
avl_set_parent(A, B);
avl_set_child(B, +sign, A);
avl_set_parent(B, P);
if (E)
avl_set_parent(E, A);
avl_replace_child(root_ptr, P, A, B);
}
/*
* Template for performing a double rotation ---
*
* sign > 0: Rotate counterclockwise (left) rooted at B, then
* clockwise (right) rooted at A:
*
* P? P? P?
* | | |
* A A E
* / \ / \ / \
* B C? => E C? => B A
* / \ / \ / \ / \
* D? E B G? D? F?G? C?
* / \ / \
* F? G? D? F?
*
* (nodes marked with ? may not exist)
*
* sign < 0: Rotate clockwise (right) rooted at B, then
* counterclockwise (left) rooted at A:
*
* P? P? P?
* | | |
* A A E
* / \ / \ / \
* C? B => C? E => A B
* / \ / \ / \ / \
* E D? G? B C? G?F? D?
* / \ / \
* G? F? F? D?
*
* Returns a pointer to E and updates balance factors. Except for those
* two things, this function is equivalent to:
* avl_rotate(root_ptr, B, -sign);
* avl_rotate(root_ptr, A, +sign);
*
* See comment in avl_handle_subtree_growth() for explanation of balance
* factor updates.
*/
static AVL_INLINE struct avl_tree_node *
avl_do_double_rotate(struct avl_tree_node ** const root_ptr,
struct avl_tree_node * const B,
struct avl_tree_node * const A, const int sign)
{
struct avl_tree_node * const E = avl_get_child(B, +sign);
struct avl_tree_node * const F = avl_get_child(E, -sign);
struct avl_tree_node * const G = avl_get_child(E, +sign);
struct avl_tree_node * const P = avl_get_parent(A);
const int e = avl_get_balance_factor(E);
avl_set_child(A, -sign, G);
avl_set_parent_balance(A, E, ((sign * e >= 0) ? 0 : -e));
avl_set_child(B, +sign, F);
avl_set_parent_balance(B, E, ((sign * e <= 0) ? 0 : -e));
avl_set_child(E, +sign, A);
avl_set_child(E, -sign, B);
avl_set_parent_balance(E, P, 0);
if (G)
avl_set_parent(G, A);
if (F)
avl_set_parent(F, B);
avl_replace_child(root_ptr, P, A, E);
return E;
}
/*
* This function handles the growth of a subtree due to an insertion.
*
* @root_ptr
* Location of the tree's root pointer.
*
* @node
* A subtree that has increased in height by 1 due to an insertion.
*
* @parent
* Parent of @node; must not be NULL.
*
* @sign
* -1 if @node is the left child of @parent;
* +1 if @node is the right child of @parent.
*
* This function will adjust @parent's balance factor, then do a (single
* or double) rotation if necessary. The return value will be %true if
* the full AVL tree is now adequately balanced, or %false if the subtree
* rooted at @parent is now adequately balanced but has increased in
* height by 1, so the caller should continue up the tree.
*
* Note that if %false is returned, no rotation will have been done.
* Indeed, a single node insertion cannot require that more than one
* (single or double) rotation be done.
*/
static AVL_INLINE bool
avl_handle_subtree_growth(struct avl_tree_node ** const root_ptr,
struct avl_tree_node * const node,
struct avl_tree_node * const parent,
const int sign)
{
int old_balance_factor, new_balance_factor;
old_balance_factor = avl_get_balance_factor(parent);
if (old_balance_factor == 0) {
avl_adjust_balance_factor(parent, sign);
/* @parent is still sufficiently balanced (-1 or +1
* balance factor), but must have increased in height.
* Continue up the tree. */
return false;
}
new_balance_factor = old_balance_factor + sign;
if (new_balance_factor == 0) {
avl_adjust_balance_factor(parent, sign);
/* @parent is now perfectly balanced (0 balance factor).
* It cannot have increased in height, so there is
* nothing more to do. */
return true;
}
/* @parent is too left-heavy (new_balance_factor == -2) or
* too right-heavy (new_balance_factor == +2). */
/* Test whether @node is left-heavy (-1 balance factor) or
* right-heavy (+1 balance factor).
* Note that it cannot be perfectly balanced (0 balance factor)
* because here we are under the invariant that @node has
* increased in height due to the insertion. */
if (sign * avl_get_balance_factor(node) > 0) {
/* @node (B below) is heavy in the same direction @parent
* (A below) is heavy.
*
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
* The comment, diagram, and equations below assume sign < 0.
* The other case is symmetric!
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
*
* Do a clockwise rotation rooted at @parent (A below):
*
* A B
* / \ / \
* B C? => D A
* / \ / \ / \
* D E? F? G?E? C?
* / \
* F? G?
*
* Before the rotation:
* balance(A) = -2
* balance(B) = -1
* Let x = height(C). Then:
* height(B) = x + 2
* height(D) = x + 1
* height(E) = x
* max(height(F), height(G)) = x.
*
* After the rotation:
* height(D) = max(height(F), height(G)) + 1
* = x + 1
* height(A) = max(height(E), height(C)) + 1
* = max(x, x) + 1 = x + 1
* balance(B) = 0
* balance(A) = 0
*/
avl_rotate(root_ptr, parent, -sign);
/* Equivalent to setting @parent's balance factor to 0. */
avl_adjust_balance_factor(parent, -sign); /* A */
/* Equivalent to setting @node's balance factor to 0. */
avl_adjust_balance_factor(node, -sign); /* B */
} else {
/* @node (B below) is heavy in the direction opposite
* from the direction @parent (A below) is heavy.
*
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
* The comment, diagram, and equations below assume sign < 0.
* The other case is symmetric!
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
*
* Do a counterblockwise rotation rooted at @node (B below),
* then a clockwise rotation rooted at @parent (A below):
*
* A A E
* / \ / \ / \
* B C? => E C? => B A
* / \ / \ / \ / \
* D? E B G? D? F?G? C?
* / \ / \
* F? G? D? F?
*
* Before the rotation:
* balance(A) = -2
* balance(B) = +1
* Let x = height(C). Then:
* height(B) = x + 2
* height(E) = x + 1
* height(D) = x
* max(height(F), height(G)) = x
*
* After both rotations:
* height(A) = max(height(G), height(C)) + 1
* = x + 1
* balance(A) = balance(E{orig}) >= 0 ? 0 : -balance(E{orig})
* height(B) = max(height(D), height(F)) + 1
* = x + 1
* balance(B) = balance(E{orig} <= 0) ? 0 : -balance(E{orig})
*
* height(E) = x + 2
* balance(E) = 0
*/
avl_do_double_rotate(root_ptr, node, parent, -sign);
}
/* Height after rotation is unchanged; nothing more to do. */
return true;
}
/* Rebalance the tree after insertion of the specified node. */
void
avl_tree_rebalance_after_insert(struct avl_tree_node **root_ptr,
struct avl_tree_node *inserted)
{
struct avl_tree_node *node, *parent;
bool done;
inserted->left = NULL;
inserted->right = NULL;
node = inserted;
/* Adjust balance factor of new node's parent.
* No rotation will need to be done at this level. */
parent = avl_get_parent(node);
if (!parent)
return;
if (node == parent->left)
avl_adjust_balance_factor(parent, -1);
else
avl_adjust_balance_factor(parent, +1);
if (avl_get_balance_factor(parent) == 0)
/* @parent did not change in height. Nothing more to do. */
return;
/* The subtree rooted at @parent increased in height by 1. */
do {
/* Adjust balance factor of next ancestor. */
node = parent;
parent = avl_get_parent(node);
if (!parent)
return;
/* The subtree rooted at @node has increased in height by 1. */
if (node == parent->left)
done = avl_handle_subtree_growth(root_ptr, node,
parent, -1);
else
done = avl_handle_subtree_growth(root_ptr, node,
parent, +1);
} while (!done);
}
/*
* This function handles the shrinkage of a subtree due to a deletion.
*
* @root_ptr
* Location of the tree's root pointer.
*
* @parent
* A node in the tree, exactly one of whose subtrees has decreased
* in height by 1 due to a deletion. (This includes the case where
* one of the child pointers has become NULL, since we can consider
* the "NULL" subtree to have a height of 0.)
*
* @sign
* +1 if the left subtree of @parent has decreased in height by 1;
* -1 if the right subtree of @parent has decreased in height by 1.
*
* @left_deleted_ret
* If the return value is not NULL, this will be set to %true if the
* left subtree of the returned node has decreased in height by 1,
* or %false if the right subtree of the returned node has decreased
* in height by 1.
*
* This function will adjust @parent's balance factor, then do a (single
* or double) rotation if necessary. The return value will be NULL if
* the full AVL tree is now adequately balanced, or a pointer to the
* parent of @parent if @parent is now adequately balanced but has
* decreased in height by 1. Also in the latter case, *left_deleted_ret
* will be set.
*/
static AVL_INLINE struct avl_tree_node *
avl_handle_subtree_shrink(struct avl_tree_node ** const root_ptr,
struct avl_tree_node *parent,
const int sign,
bool * const left_deleted_ret)
{
struct avl_tree_node *node;
int old_balance_factor, new_balance_factor;
old_balance_factor = avl_get_balance_factor(parent);
if (old_balance_factor == 0) {
/* Prior to the deletion, the subtree rooted at
* @parent was perfectly balanced. It's now
* unbalanced by 1, but that's okay and its height
* hasn't changed. Nothing more to do. */
avl_adjust_balance_factor(parent, sign);
return NULL;
}
new_balance_factor = old_balance_factor + sign;
if (new_balance_factor == 0) {
/* The subtree rooted at @parent is now perfectly
* balanced, whereas before the deletion it was
* unbalanced by 1. Its height must have decreased
* by 1. No rotation is needed at this location,
* but continue up the tree. */
avl_adjust_balance_factor(parent, sign);
node = parent;
} else {
/* @parent is too left-heavy (new_balance_factor == -2) or
* too right-heavy (new_balance_factor == +2). */
node = avl_get_child(parent, sign);
/* The rotations below are similar to those done during
* insertion (see avl_handle_subtree_growth()), so full
* comments are not provided. The only new case is the
* one where @node has a balance factor of 0, and that is
* commented. */
if (sign * avl_get_balance_factor(node) >= 0) {
avl_rotate(root_ptr, parent, -sign);
if (avl_get_balance_factor(node) == 0) {
/*
* @node (B below) is perfectly balanced.
*
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
* The comment, diagram, and equations
* below assume sign < 0. The other case
* is symmetric!
* @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
*
* Do a clockwise rotation rooted at
* @parent (A below):
*
* A B
* / \ / \
* B C? => D A
* / \ / \ / \
* D E F? G?E C?
* / \
* F? G?
*
* Before the rotation:
* balance(A) = -2
* balance(B) = 0
* Let x = height(C). Then:
* height(B) = x + 2
* height(D) = x + 1
* height(E) = x + 1
* max(height(F), height(G)) = x.
*
* After the rotation:
* height(D) = max(height(F), height(G)) + 1
* = x + 1
* height(A) = max(height(E), height(C)) + 1
* = max(x + 1, x) + 1 = x + 2
* balance(A) = -1
* balance(B) = +1
*/
/* A: -2 => -1 (sign < 0)
* or +2 => +1 (sign > 0)
* No change needed --- that's the same as
* old_balance_factor. */
/* B: 0 => +1 (sign < 0)
* or 0 => -1 (sign > 0) */
avl_adjust_balance_factor(node, -sign);
/* Height is unchanged; nothing more to do. */
return NULL;
} else {
avl_adjust_balance_factor(parent, -sign);
avl_adjust_balance_factor(node, -sign);
}
} else {
node = avl_do_double_rotate(root_ptr, node,
parent, -sign);
}
}
parent = avl_get_parent(node);
if (parent)
*left_deleted_ret = (node == parent->left);
return parent;
}
/* Swaps node X, which must have 2 children, with its in-order successor, then
* unlinks node X. Returns the parent of X just before unlinking, without its
* balance factor having been updated to account for the unlink. */
static AVL_INLINE struct avl_tree_node *
avl_tree_swap_with_successor(struct avl_tree_node **root_ptr,
struct avl_tree_node *X,
bool *left_deleted_ret)
{
struct avl_tree_node *Y, *ret;
Y = X->right;
if (!Y->left) {
/*
* P? P? P?
* | | |
* X Y Y
* / \ / \ / \
* A Y => A X => A B?
* / \ / \
* (0) B? (0) B?
*
* [ X unlinked, Y returned ]
*/
ret = Y;
*left_deleted_ret = false;
} else {
struct avl_tree_node *Q;
do {
Q = Y;
Y = Y->left;
} while (Y->left);
/*
* P? P? P?
* | | |
* X Y Y
* / \ / \ / \
* A ... => A ... => A ...
* | | |
* Q Q Q
* / / /
* Y X B?
* / \ / \
* (0) B? (0) B?
*
*
* [ X unlinked, Q returned ]
*/
Q->left = Y->right;
if (Q->left)
avl_set_parent(Q->left, Q);
Y->right = X->right;
avl_set_parent(X->right, Y);
ret = Q;
*left_deleted_ret = true;
}
Y->left = X->left;
avl_set_parent(X->left, Y);
Y->parent_balance = X->parent_balance;
avl_replace_child(root_ptr, avl_get_parent(X), X, Y);
return ret;
}
/*
* Removes an item from the specified AVL tree.
*
* @root_ptr
* Location of the AVL tree's root pointer. Indirection is needed
* because the root node may change if the tree needed to be rebalanced
* because of the deletion or if @node was the root node.
*
* @node
* Pointer to the `struct avl_tree_node' embedded in the item to
* remove from the tree.
*
* Note: This function *only* removes the node and rebalances the tree.
* It does not free any memory, nor does it do the equivalent of
* avl_tree_node_set_unlinked().
*/
void
avl_tree_remove(struct avl_tree_node **root_ptr, struct avl_tree_node *node)
{
struct avl_tree_node *parent;
bool left_deleted = false;
if (node->left && node->right) {
/* @node is fully internal, with two children. Swap it
* with its in-order successor (which must exist in the
* right subtree of @node and can have, at most, a right
* child), then unlink @node. */
parent = avl_tree_swap_with_successor(root_ptr, node,
&left_deleted);
/* @parent is now the parent of what was @node's in-order
* successor. It cannot be NULL, since @node itself was
* an ancestor of its in-order successor.
* @left_deleted has been set to %true if @node's
* in-order successor was the left child of @parent,
* otherwise %false. */
} else {
struct avl_tree_node *child;
/* @node is missing at least one child. Unlink it. Set
* @parent to @node's parent, and set @left_deleted to
* reflect which child of @parent @node was. Or, if
* @node was the root node, simply update the root node
* and return. */
child = node->left ? node->left : node->right;
parent = avl_get_parent(node);
if (parent) {
if (node == parent->left) {
parent->left = child;
left_deleted = true;
} else {
parent->right = child;
left_deleted = false;
}
if (child)
avl_set_parent(child, parent);
} else {
if (child)
avl_set_parent(child, parent);
*root_ptr = child;
return;
}
}
/* Rebalance the tree. */
do {
if (left_deleted)
parent = avl_handle_subtree_shrink(root_ptr, parent,
+1, &left_deleted);
else
parent = avl_handle_subtree_shrink(root_ptr, parent,
-1, &left_deleted);
} while (parent);
}