-
Notifications
You must be signed in to change notification settings - Fork 12
/
matrix_normal.go
140 lines (117 loc) · 2.72 KB
/
matrix_normal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
package stat
import (
"fmt"
mx "github.com/skelterjohn/go.matrix"
"math"
)
func checkMatrixNormal(M, Omega, Sigma *mx.DenseMatrix) {
p := M.Rows()
m := M.Cols()
if Omega.Rows() != p {
panic(fmt.Sprintf("Omega.Rows != M.Rows, %d != %d", Omega.Rows(), p))
}
if Omega.Cols() != Omega.Rows() {
panic("Omega is not square")
}
if Sigma.Rows() != m {
panic(fmt.Sprintf("Sigma.Cols != M.Cols, %d != %d", Sigma.Cols(), m))
}
if Sigma.Cols() != Sigma.Rows() {
panic("Sigma is not square")
}
}
/*
M is the mean, Omega is the row covariance, Sigma is the column covariance.
*/
func MatrixNormal_PDF(M, Omega, Sigma *mx.DenseMatrix) func(A *mx.DenseMatrix) float64 {
checkMatrixNormal(M, Omega, Sigma)
pf := float64(M.Rows())
mf := float64(M.Cols())
norm := math.Pow(2*math.Pi, -0.5*mf*pf)
norm *= math.Pow(Omega.Det(), -0.5*mf)
norm *= math.Pow(Sigma.Det(), -0.5*pf)
return func(X *mx.DenseMatrix) (p float64) {
p = norm
sinv, err := Sigma.Inverse()
if err != nil {
panic(err)
}
oinv, err := Omega.Inverse()
if err != nil {
panic(err)
}
diff, err := X.MinusDense(M)
if err != nil {
panic(err)
}
inner := oinv
inner, err = inner.TimesDense(diff.Transpose())
if err != nil {
panic(err)
}
inner, err = inner.TimesDense(sinv)
if err != nil {
panic(err)
}
inner, err = inner.TimesDense(diff)
if err != nil {
panic(err)
}
innerTrace := inner.Trace()
p *= math.Exp(-0.5 * innerTrace)
return
}
}
func MatrixNormal_LnPDF(M, Omega, Sigma *mx.DenseMatrix) func(A *mx.DenseMatrix) float64 {
checkMatrixNormal(M, Omega, Sigma)
pf := float64(M.Rows())
mf := float64(M.Cols())
sinv, err := Sigma.Inverse()
if err != nil {
panic(err)
}
oinv, err := Omega.Inverse()
if err != nil {
panic(err)
}
norm := (2 * math.Pi) * (-0.5 * mf * pf)
norm += Omega.Det() * (-0.5 * mf)
norm += Sigma.Det() * (-0.5 * pf)
return func(X *mx.DenseMatrix) (lp float64) {
lp = norm
diff, err := X.MinusDense(M)
if err != nil {
panic(err)
}
inner := oinv
inner, err = inner.TimesDense(diff.Transpose())
if err != nil {
panic(err)
}
inner, err = inner.TimesDense(sinv)
if err != nil {
panic(err)
}
inner, err = inner.TimesDense(diff)
if err != nil {
panic(err)
}
innerTrace := inner.Trace()
lp += -0.5 * innerTrace
return
}
}
func MatrixNormal(M, Omega, Sigma *mx.DenseMatrix) func() (X *mx.DenseMatrix) {
checkMatrixNormal(M, Omega, Sigma)
Mv := mx.Vectorize(M)
Cov := mx.Kronecker(Omega, Sigma)
normal := MVNormal(Mv, Cov)
return func() (X *mx.DenseMatrix) {
Xv := normal()
X = mx.Unvectorize(Xv, M.Rows(), M.Cols())
return
}
}
func NextMatrixNormal(M, Omega, Sigma *mx.DenseMatrix) (X *mx.DenseMatrix) {
return MatrixNormal(M, Omega, Sigma)()
}