Skip to content

Latest commit

 

History

History
265 lines (179 loc) · 6.8 KB

README.md

File metadata and controls

265 lines (179 loc) · 6.8 KB

Bingo API for using with Elasticsearch

IN DEVELOPMENT

This SDK is intended to:

  • Read molecules from SDF, Smiles, Mol, CML files, etc
  • Index them into Elasticsearch
  • Have ability to search molecules efficiently with different similarity metrics (Tanimoto, Tversky, Euclid)
  • Filter additionally based on text or number fields attached to the records

Supported Elasticsearch versions and distributions

We are supporting 7.15.x Elasticsearch and most major distributions available (AWS, Elastic, OpenDistro, etc)

TBD test against other 7.x versions

Installation

Dependency

Install dependency using pip

pip install bingo-elastic

Install async version

pip install bingo-elastic[async]

bingo-elastic async version supports all the same methods to index and search molecules as sync. To use async version, just instantiate AsyncElasticRepository

Elastisearch installation

You could use any favourite Elasticsearch distribution:

Something simple could be done as following:

docker run -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node" -e "indices.query.bool.max_clause_count=4096" docker.elastic.co/elasticsearch/elasticsearch:7.15.1

Usage

Create ElasticRepository

Sync

repository = ElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200)

Async

repository = AsyncElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200)
...
repository.close()

Async version also supports async context manager to auto close connections:

async with AsyncElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200) as rep:
    ...

Using with FastAPI:

app = FastAPI()
rep = AsyncElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200)

# This gets called once the app is shutting down.
@app.on_event("shutdown")
async def app_shutdown():
    await rep.close()

Other customisations like SSL, custom number of shards/replicas, refresh interval, and many more are supported by ElasticRepository and AsyncElasticRepository

Read Indigo records from file

IndigoRecord can be created from IndigoObject.

Full usage example:

from bingo_elastic.model.record import IndigoRecord
from indigo import Indigo

indigo = Indigo()
compound = indigo.loadMoleculeFromFile("composition.mol")
indigo_record = IndigoRecord(indigo_object=compound)

bingo_elastic provides helpers to load sdf, cml, smiles and smi files

from bingo_elastic.model import helpers

sdf = helpers.iterate_sdf("compounds.sdf")
cml = helpers.iterate_cml("compounds.cml")
smi = helpers.iterate_smiles("compounds.smi")

Also function helpers.iterate_file(file: Path) is available. This function selects correct iterate function by file extension. The file argument must be pathlib.Path instance

from bingo_elastic.model import helpers
from pathlib import Path

sdf = helpers.iterate_file(Path("compounds.sdf"))

Index records into Elasticsearch

Full usage example sync:

from bingo_elastic.model import helpers
from bingo_elastic.elastic import, ElasticRepository IndexName
from pathlib import Path

repository = ElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200)
sdf = helpers.iterate_file(Path("compounds.sdf"))
repository.index_records(sdf)

Full usage example async:

Async indexing and search requires event loop created

import asyncio
from bingo_elastic.model import helpers
from bingo_elastic.elastic import AsyncElasticRepository, IndexName
from pathlib import Path

async def index_compounds():
    repository = AsyncElasticRepository(IndexName.BINGO_MOLECULE, host="127.0.0.1", port=9200)
    sdf = helpers.iterate_file(Path("compounds.sdf"))
    await repository.index_records(sdf)

asyncio.run(index_compounds)

CAVEAT: Elasticsearch doesn't have strict notion of commit, so records might appear in the index later on Read more about it here - https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules.html#index-refresh-interval-setting

For indexing one record the the method ElasticRepository.index_record can be used

Retrieve similar records from Elasticsearch

Sync:

from bingo_elastic.predicates import SimilarityMatch
alg = SimilarityMatch(target, 0.9)
similar_records = repository.filter(similarity=alg, limit=20)

Async:

from bingo_elastic.predicates import SimilarityMatch
alg = SimilarityMatch(target, 0.9)
similar_records = await repository.filter(similarity=alg, limit=20)

In this case we requested top-20 most similar molecules compared to target based on Tanimoto similarity metric

Supported similarity algorithms:

  • SimilarityMatch or TanimotoSimilarityMatch
  • EuclidSimilarityMatch
  • TverskySimilarityMatch

Find exact records from Elasticsearch

Sync:

exact_records = repository.filter(exact=target, limit=20)

Async:

exact_records = await repository.filter(exact=target, limit=20)

In this case we requested top-20 candidate molecules with exact same fingerprint to target. target should be an instance of IndigoRecord class.

Subsctructure match of the records from Elasticsearch

Sync:

submatch_records = repository.filter(substructure=target)

Async:

submatch_records = await repository.filter(substructure=target)

In this case we requested top-10 candidate molecules with exact same fingerprint to target.

Custom fields for molecule records

Async protocol exact same, just don't forget to await

Indexing records with custom fields

indigo_record = IndigoRecord(indigo_object=compound)
indigo_record.chembl_id = "CHEMBL2063090"
indigo_record.compound_key = "GRAZOPREVIR"
indigo_record.internal_id = 10001

Searching similar molecules to the target and filtering only those that have value of the chembl_id equals to CHEMBL2063090

from bingo_elastic.queries import KeywordQuery

alg = TanimotoSimilarityMatch(target)
result = elastic_repository.filter(similarity=alg,
                                   chembl_id=KeywordQuery("CHEMBL2063090"))

Or you can just write:

result = elastic_repository.filter(similarity=alg,
                                   chembl_id=RangeQuery(1, 10000))

You could also use similarly wildcard and range queries

from bingo_elastic.queries import WildcardQuery

result = elastic_repository.filter(chembl_id=WildcardQuery("CHEMBL2063*"))

from bingo_elastic.queries import RangeQuery

result = elastic_repository.filter(internal_id=RangeQuery(1000, 100000))