-
Notifications
You must be signed in to change notification settings - Fork 23
/
main.py
125 lines (103 loc) · 4.42 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import argparse
import traceback
import time
import shutil
import logging
import yaml
import sys
import os
import torch
import numpy as np
from runners import *
def parse_args_and_config():
parser = argparse.ArgumentParser(description=globals()['__doc__'])
parser.add_argument('--runner', type=str, required=True, help='The runner to execute')
parser.add_argument('--config', type=str, required=True, help='Path to the config file')
parser.add_argument('--seed', type=int, default=1234, help='Random seed')
parser.add_argument('--run', type=str, default='run', help='Path for saving running related data.')
parser.add_argument('--doc', type=str, default='0', help='A string for documentation purpose')
parser.add_argument('--comment', type=str, default='', help='A string for experiment comment')
parser.add_argument('--verbose', type=str, default='info', help='Verbose level: info | debug | warning | critical')
parser.add_argument('--test', action='store_true', help='Whether to test the model')
parser.add_argument('--resume_training', action='store_true', help='Whether to resume training')
parser.add_argument('--dsm_sigma', type=float, default=0.16, help='Sigma for DSM tuning')
parser.add_argument('--scalability_dim', type=int, default=10, help='Dimension for scalability testing')
parser.add_argument('--load_path', type=str, default='', help='Path to state dict for resuming training')
args = parser.parse_args()
run_id = str(os.getpid())
run_time = time.strftime('%Y-%b-%d-%H-%M-%S')
# args.doc = '_'.join([args.doc, run_id, run_time])
args.log = os.path.join(args.run, 'logs', args.doc)
# parse config file
with open(os.path.join('configs', args.config), 'r') as f:
config = yaml.load(f)
new_config = dict2namespace(config)
if not args.test:
if not args.resume_training:
if os.path.exists(args.log):
shutil.rmtree(args.log)
os.makedirs(args.log)
with open(os.path.join(args.log, 'config.yml'), 'w') as f:
yaml.dump(new_config, f, default_flow_style=False)
# setup logger
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
handler2 = logging.FileHandler(os.path.join(args.log, 'stdout.txt'))
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
handler2.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.setLevel(level)
else:
level = getattr(logging, args.verbose.upper(), None)
if not isinstance(level, int):
raise ValueError('level {} not supported'.format(args.verbose))
handler1 = logging.StreamHandler()
formatter = logging.Formatter('%(levelname)s - %(filename)s - %(asctime)s - %(message)s')
handler1.setFormatter(formatter)
logger = logging.getLogger()
logger.addHandler(handler1)
logger.setLevel(level)
# add device
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
logging.info("Using device: {}".format(device))
new_config.device = device
# set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
return args, new_config
def dict2namespace(config):
namespace = argparse.Namespace()
for key, value in config.items():
if isinstance(value, dict):
new_value = dict2namespace(value)
else:
new_value = value
setattr(namespace, key, new_value)
return namespace
def main():
args, config = parse_args_and_config()
logging.info("Writing log file to {}".format(args.log))
logging.info("Exp instance id = {}".format(os.getpid()))
logging.info("Exp comment = {}".format(args.comment))
logging.info("Config =")
print(">" * 80)
print(config)
print("<" * 80)
try:
runner = eval(args.runner)(args, config)
if not args.test:
runner.train()
else:
runner.test()
except:
logging.error(traceback.format_exc())
return 0
if __name__ == '__main__':
sys.exit(main())