-
Notifications
You must be signed in to change notification settings - Fork 38
/
Rn.sage
434 lines (350 loc) · 16.2 KB
/
Rn.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
## Rn.sage
## Sage Math Sagemanifolds implementation of Euclidean R^n as classes
## namespace or names follow closely the Tutorial pdf on sagemanifolds webpage:
## http://sagemanifolds.obspm.fr/examples/pdf/SM_tutorial.pdf
############################################################################
## Copyleft 2015, Ernest Yeung <ernestyalumni@gmail.com>
## 20160109
##
## This program, along with all its code, is free software; you can redistribute
## it and/or modify it under the terms of the GNU General Public License as
## published by the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## linkedin : ernestyalumni
## wordpress : ernestyalumni
############################################################################
t = var('t')
assume(t,"real")
class R1(object):
def __init__(self):
self.M = Manifold(2,'R1',r'\mathbb{R}',start_index=1)
self.cart_ch = self.M.chart('x')
class R2(object):
def __init__(self):
self.M = Manifold(2,'R2',r'\mathbb{R}^2',start_index=1)
self.cart_ch = self.M.chart('x y')
self.U = self.M.open_subset('U',
coord_def={self.cart_ch:
(self.cart_ch[1]<0, self.cart_ch[2]!=0)}) # cf. http://sagemanifolds.obspm.fr/examples/pdf/SM_tutorial.pdf "Introducing a second chart on the manifold" the condition AND written with [] instead of ()
self.sph_ch = self.U.chart(r'r:(0,+oo) ph:(0,2*pi):\phi')
self.cart_ch_U = self.cart_ch.restrict(self.U)
self.transit_sph_to_cart = self.sph_ch.transition_map(self.cart_ch_U,
[self.sph_ch[1]*cos(self.sph_ch[2]),
self.sph_ch[1]*sin(self.sph_ch[2])])
Eucnorm = sqrt( sum([self.cart_ch_U[i[0]]**2 for i in self.M.index_generator(1)]) )
self.transit_sph_to_cart.set_inverse( Eucnorm,
atan2(self.cart_ch_U[2],self.cart_ch_U[1]) )
def equip_metric(self):
self.g = self.M.riemannian_metric('g')
for i in self.M.index_generator(1):
self.g[i[0],i[0]] = 1
def make_orthon_frames(self,ch):
"""
make_orthon_frames=make_orthon_frames(self,ch)
This method creates a change-of-basis matrix for orthonormal coordinates as
to_orthonormal
and a new orthonormal frame from the input of a (spherical coordinates) chart, ch
PARAMETERS (INPUTS):
ch - <a sagemanifolds chart>
OUTPUT
to_orthonormal - a change-of-basis matrix
eo - new orthonormal frame
EXAMPLES of USAGE:
R2eg = R2()
R2.equip_metric()
R2.make_orthon_frames(R2.sph_ch)
"""
try:
to_orthonormal = ch.domain().automorphism_field()
for i,j in self.M.index_generator(2):
if self.g[ch.frame(),i,j,ch]!= 0:
g_ij = self.g[ch.frame(),i,j,ch]
to_orthonormal[ch.frame(),i,j,ch] = 1/sqrt(g_ij)
esph = ch.frame().new_frame(to_orthonormal,'e')
# cf. https://github.com/sagemanifolds/SageManifolds/blob/master/Worksheets/v0.9/SM_Cartesian_spherical-3D.ipynb for explanation on the change of frame
Jacobian_sph_to_cart = ch.domain().change_of_frame(ch.frame(), ch.domain().default_chart().frame() )
Jacobian_och_to_sph = ch.domain().change_of_frame(esph, ch.frame() )
ch.domain().set_change_of_frame(ch.domain().default_frame(), esph,
Jacobian_och_to_sph.inverse()*Jacobian_sph_to_cart.inverse())
ch.domain().set_change_of_frame( esph, ch.domain().default_frame(),
Jacobian_sph_to_cart*Jacobian_och_to_sph )
return to_orthonormal, esph, [Jacobian_sph_to_cart, Jacobian_och_to_sph]
except AttributeError:
print "Equip the manifold with a metric g by doing the method .equip_metric() first!"
class R3(object):
def __init__(self):
self.M = Manifold(3,'R3',r'\mathbb{R}^3',start_index=1)
self.cart_ch = self.M.chart('x y z')
self.U = self.M.open_subset('U',coord_def={self.cart_ch: (self.cart_ch[1]<0, self.cart_ch[2]!=0)})
self.cart_ch_U = self.cart_ch.restrict(self.U)
self.sph_ch = self.U.chart(r'rh:(0,+oo):\rho th:(0,pi):\theta ph:(0,2*pi):\phi')
rh,th,ph = [self.sph_ch[i[0]] for i in self.M.index_generator(1)]
self.transit_sph_to_cart = self.sph_ch.transition_map(self.cart_ch_U,
[rh*sin(th)*cos(ph),rh*sin(th)*sin(ph),rh*cos(th)])
Sphnorm = sqrt(sum([self.cart_ch_U[i[0]]**2 for i in self.M.index_generator(1)]))
self.transit_sph_to_cart.set_inverse( Sphnorm,atan2( sqrt( sum([ self.cart_ch_U[i]**2 for i in range(1,3)])), self.cart_ch_U[3]), atan2( self.cart_ch_U[2],self.cart_ch_U[1]) )
self.cyl_ch = self.U.chart(r'r:(0,+oo) phi:(0,2*pi):\phi zc')
r,phi,zc = [self.cyl_ch[i[0]] for i in self.M.index_generator(1)]
self.transit_cyl_to_cart = self.cyl_ch.transition_map(self.cart_ch_U,
[r*cos(phi),r*sin(phi),zc])
self.transit_cyl_to_cart.set_inverse( sqrt( self.cart_ch_U[1]**2 + self.cart_ch_U[2]**2 ) , atan2( self.cart_ch_U[2],self.cart_ch_U[1]), self.cart_ch_U[3] )
def equip_metric(self):
self.g = self.M.riemannian_metric('g')
for i in self.M.index_generator(1):
self.g[i[0],i[0]] = 1
def make_orthon_frames(self,ch):
"""
make_orthon_frames=make_orthon_frames(self,ch)
This method creates a change-of-basis matrix for orthonormal coordinates as
to_orthonormal
and a new orthonormal frame from the input of a (spherical coordinates) chart, ch
PARAMETERS (INPUTS):
ch - <a sagemanifolds chart>
OUTPUT
to_orthonormal - a change-of-basis matrix
eo - new orthonormal frame
EXAMPLES of USAGE:
R3eg = R3()
R3.equip_metric()
R3.make_orthon_frames(R3.sph_ch)
"""
try:
to_orthonormal = ch.domain().automorphism_field()
for i,j in self.M.index_generator(2):
if self.g[ch.frame(),i,j,ch]!= 0:
g_ij = self.g[ch.frame(),i,j,ch]
to_orthonormal[ch.frame(),i,j,ch] = 1/sqrt(g_ij)
eoch = ch.frame().new_frame(to_orthonormal,'e')
# cf. https://github.com/sagemanifolds/SageManifolds/blob/master/Worksheets/v0.9/SM_Cartesian_spherical-3D.ipynb for explanation on the change of frame
Jacobian_ch_to_cart = ch.domain().change_of_frame(ch.frame(), ch.domain().default_chart().frame() )
Jacobian_och_to_ch = ch.domain().change_of_frame(eoch, ch.frame() )
ch.domain().set_change_of_frame(ch.domain().default_frame(), eoch,
Jacobian_och_to_ch.inverse()*Jacobian_ch_to_cart.inverse())
ch.domain().set_change_of_frame( eoch, ch.domain().default_frame(),
Jacobian_ch_to_cart*Jacobian_och_to_ch )
return to_orthonormal, eoch, [Jacobian_ch_to_cart, Jacobian_och_to_ch]
except AttributeError:
print "Equip the manifold with a metric g by doing the method .equip_metric() first!"
class Rn(object):
def __init__(self,n):
assert n>0
if n == 2:
print "Use the class R2"
elif n == 3:
print "Use the class R3"
else:
self.M = Manifold(n,'R'+str(n),r'\mathbb{R}^'+str(n),start_index=1)
self.cart_ch = self.M.chart(r" ".join([r"x"+str(i) for i in range(1,n+1)]))
xis = [self.cart_ch[i[0]] for i in self.M.index_generator(1)]
self.U = self.M.open_subset('U',coord_def={self.cart_ch:(xis[0]<0,xis[1]!=0)})
self.cart_ch_U = self.cart_ch.restrict(self.U)
# spherical coordinates
self.sph_ch = self.U.chart(r'rh:(0,+oo):\rho '+r" ".join([r"th"+str(i)+r":(0,pi)" for i in range(1,n+1-2)])+r' ph:(0,2*pi):\phi')
sphs = [self.sph_ch[i[0]] for i in self.M.index_generator(1)]
self.transit_sph_to_cart = self.sph_ch.transition_map(self.cart_ch_U,
[sphs[0]*prod([sin(sphs[i]) for i in range(1,n-1)])*cos(sphs[-1]), sphs[0]*prod([sin(sphs[i]) for i in range(1,n-1)])*sin(sphs[-1])]+
[sphs[0]*prod([sin(sphs[i]) for i in range(1,j)])*cos(sphs[j]) for j in range(n-2,1,-1)]+[sphs[0]*cos(sphs[1]),])
gen_transit_list_sph = [ sqrt(sum([ xis[i]**2 for i in range(len(xis))])),] + [atan2( sqrt( sum([xis[i]**2 for i in range(j)])),xis[j]) for j in range(n-1,1,-1)]+[atan2(xis[1],xis[0]),]
self.transit_sph_to_cart.set_inverse(*gen_transit_list_sph)
# cylindrical coordinates
self.cyl_ch = self.U.chart(r'r:(0,+oo) '+r" ".join([r"the"+str(i)+r":(0,pi)" for i in range(1,n+1-3)])+r' phi:(0,2*pi):\varphi z')
cyls = [self.cyl_ch[i[0]] for i in self.M.index_generator(1)]
self.transit_cyl_to_cart = self.cyl_ch.transition_map(self.cart_ch_U, [cyls[0]*prod([sin(cyls[i]) for i in range(1,n-2)])*cos(cyls[-2]), cyls[0]*prod([sin(cyls[i]) for i in range(1,n-2)])*sin(cyls[-2])]+ [cyls[0]*prod([sin(cyls[i]) for i in range(1,j)])*cos(cyls[j]) for j in range(n-3,1,-1)]+[cyls[0]*cos(cyls[1]),cyls[-1]] )
gen_transit_list_cyl = [ sqrt(sum([ xis[i]**2 for i in range(len(xis)-1)])),]+[atan2(sqrt( sum([xis[i]**2 for i in range(j)])),xis[j]) for j in range(n-2,1,-1)]+[atan2(xis[1],xis[0]),xis[n-1]]
self.transit_cyl_to_cart.set_inverse(*gen_transit_list_cyl)
def equip_metric(self):
self.g=self.M.riemannian_metric('g')
for i in self.M.index_generator(1):
self.g[i[0],i[0]]=1
def make_orthon_frames(self,ch):
"""
make_orthon_frames=make_orthon_frames(self,ch)
This method creates a change-of-basis matrix for orthonormal coordinates as
to_orthonormal
and a new orthonormal frame from the input of a (spherical coordinates) chart, ch
PARAMETERS (INPUTS):
ch - <a sagemanifolds chart>
OUTPUT
to_orthonormal - a change-of-basis matrix
eoch - new orthonormal frame
EXAMPLES of USAGE:
R4 = Rn(4)
R4.equip_metric()
R4.make_orthon_frames(R4.sph_ch)
"""
try:
to_orthonormal = ch.domain().automorphism_field()
for i,j in self.M.index_generator(2):
if self.g[ch.frame(),i,j,ch]!= 0:
g_ij = self.g[ch.frame(),i,j,ch]
to_orthonormal[ch.frame(),i,j,ch] = 1/sqrt(g_ij)
eoch = ch.frame().new_frame(to_orthonormal,'e')
# cf. https://github.com/sagemanifolds/SageManifolds/blob/master/Worksheets/v0.9/SM_Cartesian_spherical-3D.ipynb for explanation on the change of frame
Jacobian_ch_to_cart = ch.domain().change_of_frame(ch.frame(), ch.domain().default_chart().frame() )
Jacobian_och_to_ch = ch.domain().change_of_frame(eoch, ch.frame() )
ch.domain().set_change_of_frame(ch.domain().default_frame(), eoch,
Jacobian_och_to_ch.inverse()*Jacobian_ch_to_cart.inverse())
ch.domain().set_change_of_frame( eoch, ch.domain().default_frame(),
Jacobian_ch_to_cart*Jacobian_och_to_ch )
return to_orthonormal, eoch, [Jacobian_ch_to_cart,Jacobian_och_to_ch]
except AttributeError:
print "Equip the manifold with a metric g by doing the method .equip_metric() first!"
def make_pt(ch):
"""
make_pt = make_pt(ch)
INPUT
ch = sagemanifold chart
EXAMPLES of USAGE
p = make_pt(R3.cart_ch)
"""
coords = ch[:]
farglst = ['p',]+list(coords)
p = ch.scalar_field( function(*farglst) )
return p
def make_u(ch):
"""
make_u = make_u(ch)
make_u creates a time-INDEPENDENT velocity vector field
INPUT
ch = sage manifold chart
EXAMPLEs of USAGE:
R2 = Rd(2)
u2 = make_u(R2.X_U)
R3 = Rd(3)
u3 = make_u(R3.X_U)
u3[1].expr().diff(t) # 0 ; this demonstrates that this velocity vector is time-INDEPENDENT
"""
n_0 = ch.domain().manifold().dim()
# ucomplst components list of u
ucomplst = []
for i in ch.domain().manifold().index_generator(1):
farglst = ['u'+str(i[0]),] + list(ch[:])
ucomplst.append( function( *farglst ) )
u = ch.domain().vector_field()
u[ch.frame(),:,ch] = ucomplst
return u
def make_ut(ch):
"""
make_ut = make_ut(ch)
INPUT
ch = sage manifold chart
EXAMPLEs of USAGE:
R2 = Rd(2)
ut2 = make_ut(R2.X_U)
R3 = Rd(3)
ut3 = make_ut(R3.X_U)
"""
n_0 = ch.domain().manifold().dim()
# ucomplst components list of u
ucomplst = []
for i in ch.domain().manifold().index_generator(1):
farglst = ['u'+str(i[0]),] + [t,] + list(ch[:])
ucomplst.append( function( *farglst ) )
u = ch.domain().vector_field()
u[ch.frame(),:,ch] = ucomplst
return u
def make_material_der(u, ch):
"""
make_material_der = make_material_der(u,ch)
EXAMPLES of USAGE:
R3 = Rd(3)
u3t = make_ut(R3.X_U)
udu = make_material_der(u3t, R3.X_U)
"""
uedcomp = []
for ui in u[ch.frame(),:,ch]:
uidict = dict( [(ch,ui),])
uedcomp.append( u( ch.domain().scalar_field( uidict ) ))
X = sum( [ uedcomp[i[0]-1]*ch.frame()[i[0]] for i in ch.domain().manifold().index_generator(1) ] )
return X
def div(u,g):
"""
div = div(u,g)
Return the divergence of vector field u \in \mathfrak{X}(M), given the metric g for the manifold M
"""
uflat = g['_ij']*u['^j']
return xder( uflat.hodge_star(g) )
def grad(p,g):
"""
grad = grad(p,g)
EXAMPLE of USAGE
R3 = Rd(3)
p = make_pt(R3.M)
grad(p,R3.g)
"""
dp = xder( p )
gradp = g.inverse()['^ij']*dp['_j']
return gradp
def curl(u,g):
"""
curl = curl(u,g)
Return the curl of vector field u \in \mathfrak{X}(M), given the metric g for the manifold M
"""
uflat = g['_ij']*u['^j']
duflat = xder( uflat )
return duflat.hodge_star(g)
def buildrho(ch):
"""
buildrho = buildrho(ch)
build a time-dependent $\rho$ the mass density, as a scalar function on a chart of a manifold
EXAMPLE of USAGE:
R2=Rd(2)
rho2=buildrho(R2.X_U)
"""
n_0 = ch.domain().manifold().dim()
variables = [t,]+[ch[i] for i in range(1,n_0+1)]
rho = ch.domain().scalar_field(function('rho',*variables),name='rho',latex_name=r'\rho' )
return rho
##############################
## Usage Examples
##############################
"""
R2eg = R2()
R2eg.transit_sph_to_cart.display()
R2eg.equip_metric()
R2eg.g.display(R2eg.sph_ch.frame(),R2eg.sph_ch)
to_orthonormal2, e2, Jacobians2 = R2eg.make_orthon_frames(R2eg.sph_ch)
to_orthonormal2.display(R2eg.sph_ch.frame(),R2eg.sph_ch)
e2[1].display( R2eg.sph_ch.frame(), R2eg.sph_ch)
e2[2].display( R2eg.sph_ch.frame(), R2eg.sph_ch)
Jacobians2[0].inverse()[:,R2eg.sph_ch]
Jacobians2[1].inverse()[R2eg.sph_ch.frame(),:,R2eg.sph_ch]
R3eg = R3()
R3eg.transit_sph_to_cart.display()
R3eg.transit_cyl_to_cart.display()
R3eg.equip_metric()
R3eg.g.display(R3eg.sph_ch.frame(),R3eg.sph_ch)
R3eg.g.display(R3eg.cyl_ch.frame(),R3eg.cyl_ch)
to_orthonormal3sph, e3sph, Jacobians3sph = R3eg.make_orthon_frames(R3eg.sph_ch)
to_orthonormal3cyl, e3cyl, Jacobians3cyl = R3eg.make_orthon_frames(R3eg.cyl_ch)
to_orthonormal3sph.display(R3eg.sph_ch.frame(),R3eg.sph_ch)
to_orthonormal3cyl.display(R3eg.cyl_ch.frame(),R3eg.cyl_ch)
for i in range(1,3+1):
e3sph[i].display( R3eg.sph_ch.frame(), R3eg.sph_ch )
for i in range(1,3+1):
e3cyl[i].display( R3eg.cyl_ch.frame(), R3eg.cyl_ch )
Jacobians3sph[0].inverse()[:,R3eg.sph_ch]
Jacobians3cyl[0].inverse()[:,R3eg.cyl_ch]
R4 = Rn(4)
R4.transit_sph_to_cart.display()
R4.transit_cyl_to_cart.display()
R4.equip_metric()
R4.g.display(R4.sph_ch.frame(),R4.sph_ch)
R4.g.display(R4.cyl_ch.frame(),R4.cyl_ch)
to_orthonormal4sph, e4sph, Jacobians4sph = R4.make_orthon_frames(R4.sph_ch)
to_orthonormal4cyl, e4cyl, Jacobians4cyl = R4.make_orthon_frames(R4.cyl_ch)
to_orthonormal4sph.display(R4.sph_ch.frame(),R4.sph_ch)
to_orthonormal4cyl.display(R4.cyl_ch.frame(),R4.cyl_ch)
for i in range(1,4+1):
e4sph[i].display( R4.sph_ch.frame(), R4.sph_ch )
for i in range(1,4+1):
e4cyl[i].display( R4.cyl_ch.frame(), R4.cyl_ch )
Jacobians4sph[0].inverse()[:,R4.sph_ch]
Jacobians4cyl[0].inverse()[:,R4.cyl_ch]
"""