-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
93 lines (93 loc) · 853 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
<!DOCTYPE html>
<!-- Created by pdf2htmlEX (https://github.com/pdf2htmlEX/pdf2htmlEX) -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8"/>
<meta name="generator" content="pdf2htmlEX"/>
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"/>
<link rel="stylesheet" href="base.min.css"/>
<link rel="stylesheet" href="fancy.min.css"/>
<link rel="stylesheet" href="index.css"/>
<link rel="icon" type="image/png" href="./favicon.png">
<script>
/*
Copyright 2012 Mozilla Foundation
Copyright 2013 Lu Wang <coolwanglu@gmail.com>
Apachine License Version 2.0
*/
(function(){function b(a,b,e,f){var c=(a.className||"").split(/\s+/g);""===c[0]&&c.shift();var d=c.indexOf(b);0>d&&e&&c.push(b);0<=d&&f&&c.splice(d,1);a.className=c.join(" ");return 0<=d}if(!("classList"in document.createElement("div"))){var e={add:function(a){b(this.element,a,!0,!1)},contains:function(a){return b(this.element,a,!1,!1)},remove:function(a){b(this.element,a,!1,!0)},toggle:function(a){b(this.element,a,!0,!0)}};Object.defineProperty(HTMLElement.prototype,"classList",{get:function(){if(this._classList)return this._classList;
var a=Object.create(e,{element:{value:this,writable:!1,enumerable:!0}});Object.defineProperty(this,"_classList",{value:a,writable:!1,enumerable:!1});return a},enumerable:!0})}})();
</script>
<script>
(function(){/*
pdf2htmlEX.js: Core UI functions for pdf2htmlEX
Copyright 2012,2013 Lu Wang <coolwanglu@gmail.com> and other contributors
https://github.com/pdf2htmlEX/pdf2htmlEX/blob/master/share/LICENSE
*/
var pdf2htmlEX=window.pdf2htmlEX=window.pdf2htmlEX||{},CSS_CLASS_NAMES={page_frame:"pf",page_content_box:"pc",page_data:"pi",background_image:"bi",link:"l",input_radio:"ir",__dummy__:"no comma"},DEFAULT_CONFIG={container_id:"page-container",sidebar_id:"sidebar",outline_id:"outline",loading_indicator_cls:"loading-indicator",preload_pages:3,render_timeout:100,scale_step:0.9,key_handler:!0,hashchange_handler:!0,view_history_handler:!0,__dummy__:"no comma"},EPS=1E-6;
function invert(a){var b=a[0]*a[3]-a[1]*a[2];return[a[3]/b,-a[1]/b,-a[2]/b,a[0]/b,(a[2]*a[5]-a[3]*a[4])/b,(a[1]*a[4]-a[0]*a[5])/b]}function transform(a,b){return[a[0]*b[0]+a[2]*b[1]+a[4],a[1]*b[0]+a[3]*b[1]+a[5]]}function get_page_number(a){return parseInt(a.getAttribute("data-page-no"),16)}function disable_dragstart(a){for(var b=0,c=a.length;b<c;++b)a[b].addEventListener("dragstart",function(){return!1},!1)}
function clone_and_extend_objs(a){for(var b={},c=0,e=arguments.length;c<e;++c){var h=arguments[c],d;for(d in h)h.hasOwnProperty(d)&&(b[d]=h[d])}return b}
function Page(a){if(a){this.shown=this.loaded=!1;this.page=a;this.num=get_page_number(a);this.original_height=a.clientHeight;this.original_width=a.clientWidth;var b=a.getElementsByClassName(CSS_CLASS_NAMES.page_content_box)[0];b&&(this.content_box=b,this.original_scale=this.cur_scale=this.original_height/b.clientHeight,this.page_data=JSON.parse(a.getElementsByClassName(CSS_CLASS_NAMES.page_data)[0].getAttribute("data-data")),this.ctm=this.page_data.ctm,this.ictm=invert(this.ctm),this.loaded=!0)}}
Page.prototype={hide:function(){this.loaded&&this.shown&&(this.content_box.classList.remove("opened"),this.shown=!1)},show:function(){this.loaded&&!this.shown&&(this.content_box.classList.add("opened"),this.shown=!0)},rescale:function(a){this.cur_scale=0===a?this.original_scale:a;this.loaded&&(a=this.content_box.style,a.msTransform=a.webkitTransform=a.transform="scale("+this.cur_scale.toFixed(3)+")");a=this.page.style;a.height=this.original_height*this.cur_scale+"px";a.width=this.original_width*this.cur_scale+
"px"},view_position:function(){var a=this.page,b=a.parentNode;return[b.scrollLeft-a.offsetLeft-a.clientLeft,b.scrollTop-a.offsetTop-a.clientTop]},height:function(){return this.page.clientHeight},width:function(){return this.page.clientWidth}};function Viewer(a){this.config=clone_and_extend_objs(DEFAULT_CONFIG,0<arguments.length?a:{});this.pages_loading=[];this.init_before_loading_content();var b=this;document.addEventListener("DOMContentLoaded",function(){b.init_after_loading_content()},!1)}
Viewer.prototype={scale:1,cur_page_idx:0,first_page_idx:0,init_before_loading_content:function(){this.pre_hide_pages()},initialize_radio_button:function(){for(var a=document.getElementsByClassName(CSS_CLASS_NAMES.input_radio),b=0;b<a.length;b++)a[b].addEventListener("click",function(){this.classList.toggle("checked")})},init_after_loading_content:function(){this.sidebar=document.getElementById(this.config.sidebar_id);this.outline=document.getElementById(this.config.outline_id);this.container=document.getElementById(this.config.container_id);
this.loading_indicator=document.getElementsByClassName(this.config.loading_indicator_cls)[0];for(var a=!0,b=this.outline.childNodes,c=0,e=b.length;c<e;++c)if("ul"===b[c].nodeName.toLowerCase()){a=!1;break}a||this.sidebar.classList.add("opened");this.find_pages();if(0!=this.pages.length){disable_dragstart(document.getElementsByClassName(CSS_CLASS_NAMES.background_image));this.config.key_handler&&this.register_key_handler();var h=this;this.config.hashchange_handler&&window.addEventListener("hashchange",
function(a){h.navigate_to_dest(document.location.hash.substring(1))},!1);this.config.view_history_handler&&window.addEventListener("popstate",function(a){a.state&&h.navigate_to_dest(a.state)},!1);this.container.addEventListener("scroll",function(){h.update_page_idx();h.schedule_render(!0)},!1);[this.container,this.outline].forEach(function(a){a.addEventListener("click",h.link_handler.bind(h),!1)});this.initialize_radio_button();this.render()}},find_pages:function(){for(var a=[],b={},c=this.container.childNodes,
e=0,h=c.length;e<h;++e){var d=c[e];d.nodeType===Node.ELEMENT_NODE&&d.classList.contains(CSS_CLASS_NAMES.page_frame)&&(d=new Page(d),a.push(d),b[d.num]=a.length-1)}this.pages=a;this.page_map=b},load_page:function(a,b,c){var e=this.pages;if(!(a>=e.length||(e=e[a],e.loaded||this.pages_loading[a]))){var e=e.page,h=e.getAttribute("data-page-url");if(h){this.pages_loading[a]=!0;var d=e.getElementsByClassName(this.config.loading_indicator_cls)[0];"undefined"===typeof d&&(d=this.loading_indicator.cloneNode(!0),
d.classList.add("active"),e.appendChild(d));var f=this,g=new XMLHttpRequest;g.open("GET",h,!0);g.onload=function(){if(200===g.status||0===g.status){var b=document.createElement("div");b.innerHTML=g.responseText;for(var d=null,b=b.childNodes,e=0,h=b.length;e<h;++e){var p=b[e];if(p.nodeType===Node.ELEMENT_NODE&&p.classList.contains(CSS_CLASS_NAMES.page_frame)){d=p;break}}b=f.pages[a];f.container.replaceChild(d,b.page);b=new Page(d);f.pages[a]=b;b.hide();b.rescale(f.scale);disable_dragstart(d.getElementsByClassName(CSS_CLASS_NAMES.background_image));
f.schedule_render(!1);c&&c(b)}delete f.pages_loading[a]};g.send(null)}void 0===b&&(b=this.config.preload_pages);0<--b&&(f=this,setTimeout(function(){f.load_page(a+1,b)},0))}},pre_hide_pages:function(){var a="@media screen{."+CSS_CLASS_NAMES.page_content_box+"{display:none;}}",b=document.createElement("style");b.styleSheet?b.styleSheet.cssText=a:b.appendChild(document.createTextNode(a));document.head.appendChild(b)},render:function(){for(var a=this.container,b=a.scrollTop,c=a.clientHeight,a=b-c,b=
b+c+c,c=this.pages,e=0,h=c.length;e<h;++e){var d=c[e],f=d.page,g=f.offsetTop+f.clientTop,f=g+f.clientHeight;g<=b&&f>=a?d.loaded?d.show():this.load_page(e):d.hide()}},update_page_idx:function(){var a=this.pages,b=a.length;if(!(2>b)){for(var c=this.container,e=c.scrollTop,c=e+c.clientHeight,h=-1,d=b,f=d-h;1<f;){var g=h+Math.floor(f/2),f=a[g].page;f.offsetTop+f.clientTop+f.clientHeight>=e?d=g:h=g;f=d-h}this.first_page_idx=d;for(var g=h=this.cur_page_idx,k=0;d<b;++d){var f=a[d].page,l=f.offsetTop+f.clientTop,
f=f.clientHeight;if(l>c)break;f=(Math.min(c,l+f)-Math.max(e,l))/f;if(d===h&&Math.abs(f-1)<=EPS){g=h;break}f>k&&(k=f,g=d)}this.cur_page_idx=g}},schedule_render:function(a){if(void 0!==this.render_timer){if(!a)return;clearTimeout(this.render_timer)}var b=this;this.render_timer=setTimeout(function(){delete b.render_timer;b.render()},this.config.render_timeout)},register_key_handler:function(){var a=this;window.addEventListener("DOMMouseScroll",function(b){if(b.ctrlKey){b.preventDefault();var c=a.container,
e=c.getBoundingClientRect(),c=[b.clientX-e.left-c.clientLeft,b.clientY-e.top-c.clientTop];a.rescale(Math.pow(a.config.scale_step,b.detail),!0,c)}},!1);window.addEventListener("keydown",function(b){var c=!1,e=b.ctrlKey||b.metaKey,h=b.altKey;switch(b.keyCode){case 61:case 107:case 187:e&&(a.rescale(1/a.config.scale_step,!0),c=!0);break;case 173:case 109:case 189:e&&(a.rescale(a.config.scale_step,!0),c=!0);break;case 48:e&&(a.rescale(0,!1),c=!0);break;case 33:h?a.scroll_to(a.cur_page_idx-1):a.container.scrollTop-=
a.container.clientHeight;c=!0;break;case 34:h?a.scroll_to(a.cur_page_idx+1):a.container.scrollTop+=a.container.clientHeight;c=!0;break;case 35:a.container.scrollTop=a.container.scrollHeight;c=!0;break;case 36:a.container.scrollTop=0,c=!0}c&&b.preventDefault()},!1)},rescale:function(a,b,c){var e=this.scale;this.scale=a=0===a?1:b?e*a:a;c||(c=[0,0]);b=this.container;c[0]+=b.scrollLeft;c[1]+=b.scrollTop;for(var h=this.pages,d=h.length,f=this.first_page_idx;f<d;++f){var g=h[f].page;if(g.offsetTop+g.clientTop>=
c[1])break}g=f-1;0>g&&(g=0);var g=h[g].page,k=g.clientWidth,f=g.clientHeight,l=g.offsetLeft+g.clientLeft,m=c[0]-l;0>m?m=0:m>k&&(m=k);k=g.offsetTop+g.clientTop;c=c[1]-k;0>c?c=0:c>f&&(c=f);for(f=0;f<d;++f)h[f].rescale(a);b.scrollLeft+=m/e*a+g.offsetLeft+g.clientLeft-m-l;b.scrollTop+=c/e*a+g.offsetTop+g.clientTop-c-k;this.schedule_render(!0)},fit_width:function(){var a=this.cur_page_idx;this.rescale(this.container.clientWidth/this.pages[a].width(),!0);this.scroll_to(a)},fit_height:function(){var a=this.cur_page_idx;
this.rescale(this.container.clientHeight/this.pages[a].height(),!0);this.scroll_to(a)},get_containing_page:function(a){for(;a;){if(a.nodeType===Node.ELEMENT_NODE&&a.classList.contains(CSS_CLASS_NAMES.page_frame)){a=get_page_number(a);var b=this.page_map;return a in b?this.pages[b[a]]:null}a=a.parentNode}return null},link_handler:function(a){var b=a.target,c=b.getAttribute("data-dest-detail");if(c){if(this.config.view_history_handler)try{var e=this.get_current_view_hash();window.history.replaceState(e,
"","#"+e);window.history.pushState(c,"","#"+c)}catch(h){}this.navigate_to_dest(c,this.get_containing_page(b));a.preventDefault()}},navigate_to_dest:function(a,b){try{var c=JSON.parse(a)}catch(e){return}if(c instanceof Array){var h=c[0],d=this.page_map;if(h in d){for(var f=d[h],h=this.pages[f],d=2,g=c.length;d<g;++d){var k=c[d];if(null!==k&&"number"!==typeof k)return}for(;6>c.length;)c.push(null);var g=b||this.pages[this.cur_page_idx],d=g.view_position(),d=transform(g.ictm,[d[0],g.height()-d[1]]),
g=this.scale,l=[0,0],m=!0,k=!1,n=this.scale;switch(c[1]){case "XYZ":l=[null===c[2]?d[0]:c[2]*n,null===c[3]?d[1]:c[3]*n];g=c[4];if(null===g||0===g)g=this.scale;k=!0;break;case "Fit":case "FitB":l=[0,0];k=!0;break;case "FitH":case "FitBH":l=[0,null===c[2]?d[1]:c[2]*n];k=!0;break;case "FitV":case "FitBV":l=[null===c[2]?d[0]:c[2]*n,0];k=!0;break;case "FitR":l=[c[2]*n,c[5]*n],m=!1,k=!0}if(k){this.rescale(g,!1);var p=this,c=function(a){l=transform(a.ctm,l);m&&(l[1]=a.height()-l[1]);p.scroll_to(f,l)};h.loaded?
c(h):(this.load_page(f,void 0,c),this.scroll_to(f))}}}},scroll_to:function(a,b){var c=this.pages;if(!(0>a||a>=c.length)){c=c[a].view_position();void 0===b&&(b=[0,0]);var e=this.container;e.scrollLeft+=b[0]-c[0];e.scrollTop+=b[1]-c[1]}},get_current_view_hash:function(){var a=[],b=this.pages[this.cur_page_idx];a.push(b.num);a.push("XYZ");var c=b.view_position(),c=transform(b.ictm,[c[0],b.height()-c[1]]);a.push(c[0]/this.scale);a.push(c[1]/this.scale);a.push(this.scale);return JSON.stringify(a)}};
pdf2htmlEX.Viewer=Viewer;})();
</script>
<script>
try{
pdf2htmlEX.defaultViewer = new pdf2htmlEX.Viewer({});
}catch(e){}
</script>
<title>50 Lecciones de Matemática - Prof. Evidio Quintana Fernández</title>
</head>
<body>
<div id="sidebar">
<div id="outline">
<ul><li><a class="l" href="#pf4" data-dest-detail='[4,"XYZ",101.905,690.795,null]'>50 Lecciones de Matemática</a><ul><li><a class="l" href="#pf4" data-dest-detail='[4,"XYZ",101.905,551.318,null]'>Lección #1 - Conozcamos al triángulo rectángulo</a></li><li><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",101.905,690.795,null]'>Lección #2 - Rectas y Puntos Notables</a></li><li><a class="l" href="#pfa" data-dest-detail='[10,"XYZ",101.905,690.795,null]'>Lección #3 - Circunferencia y Cuadrilátero</a></li><li><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",101.905,690.795,null]'>Lección #4 - Otros Teoremas</a></li><li><a class="l" href="#pf11" data-dest-detail='[17,"XYZ",101.905,690.795,null]'>Lección #5</a></li><li><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",101.905,690.795,null]'>Lección #6</a></li></ul></li></ul></div>
</div>
<div id="page-container">
<div id="pf1" class="pf w0 h0" data-page-no="1"><div class="pc pc1 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x1 h2 y1 ff1 fs0 fc0 sc0 ls0 ws0">50<span class="_ _0"> </span>Lecciones<span class="_ _0"> </span>de<span class="_ _0"> </span>Matem´<span class="_ _1"></span>atica</div><div class="t m0 x2 h3 y2 ff1 fs1 fc0 sc0 ls0 ws0">Prof.<span class="_ _2"> </span>Evidio<span class="_ _2"> </span>Quin<span class="_ _3"></span>tana<span class="_ _2"> </span>F<span class="_ _4"></span>ern´<span class="_ _5"></span>andez</div><div class="t m0 x3 h4 y3 ff2 fs1 fc0 sc0 ls0 ws0">Lecciones<span class="_ _6"> </span>para<span class="_ _6"> </span>la<span class="_ _6"> </span>preparaci´<span class="_ _7"></span>on</div><div class="t m0 x4 h4 y4 ff2 fs1 fc0 sc0 ls0 ws0">en<span class="_ _6"> </span>concursos<span class="_ _6"> </span>de<span class="_ _6"> </span>matem´<span class="_ _7"></span>atica</div><div class="t m0 x5 h4 y5 ff2 fs1 fc0 sc0 ls0 ws0">y<span class="_ _6"> </span>similares</div><div class="t m0 x6 h5 y6 ff3 fs2 fc0 sc0 ls0 ws0">La<span class="_ _8"> </span>Habana</div><div class="t m0 x7 h5 y7 ff3 fs2 fc0 sc0 ls0 ws0">Cuba</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf2" class="pf w0 h0" data-page-no="2"><div class="pc pc2 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 x8 h6 y8 ff4 fs3 fc0 sc0 ls0 ws0">i</div><div class="t m0 x9 h7 y9 ff5 fs3 fc0 sc0 ls0 ws0">Resumen</div><div class="t m0 xa h7 ya ff6 fs3 fc0 sc0 ls0 ws0">Este<span class="_ _8"> </span>do<span class="_ _9"></span>cumen<span class="_ _3"></span>to<span class="_ _6"> </span>es<span class="_ _8"> </span>una<span class="_ _6"> </span>transcripci´<span class="_ _a"></span>on<span class="_ _8"> </span>de<span class="_ _6"> </span>las<span class="_ _8"> </span>lecciones<span class="_ _6"> </span>del<span class="_ _8"> </span>profesor<span class="_ _6"> </span>Evidio<span class="_ _8"> </span>Quintana</div><div class="t m0 xb h7 yb ff6 fs3 fc0 sc0 ls0 ws0">F<span class="_ _b"></span>ern´<span class="_ _a"></span>andez<span class="_"> </span>para<span class="_ _c"> </span>la<span class="_ _c"> </span>preparaci´<span class="_ _d"></span>on<span class="_ _c"> </span>de<span class="_"> </span>estudiantes<span class="_ _e"> </span>de<span class="_ _e"> </span>preuniversitario<span class="_"> </span>en<span class="_ _c"> </span>concursos<span class="_ _e"> </span>y<span class="_ _e"> </span>similares</div><div class="t m0 xb h7 yc ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>matem´<span class="_ _d"></span>atica.</div><div class="t m0 xa h7 yd ff6 fs3 fc0 sc0 ls0 ws0">Esto<span class="_ _f"> </span>es<span class="_ _f"> </span>un<span class="_ _f"> </span>traba<span class="_ _9"></span>jo<span class="_ _f"> </span>en<span class="_ _f"> </span>progreso,<span class="_ _f"> </span>puede<span class="_ _f"> </span>cambiar<span class="_ _c"> </span>y<span class="_ _f"> </span>tener<span class="_ _f"> </span>errores.<span class="_ _f"> </span>T<span class="_ _b"></span>o<span class="_ _9"></span>do<span class="_ _f"> </span>el<span class="_ _f"> </span>traba<span class="_ _9"></span>jo<span class="_ _f"> </span>y<span class="_ _f"> </span>las</div><div class="t m0 xb h7 ye ff6 fs3 fc0 sc0 ls0 ws0">colecciones<span class="_ _c"> </span>aqu<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>presen<span class="_ _12"></span>tes<span class="_ _c"> </span>son<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>autor<span class="_ _10"></span>´<span class="_ _11"></span>ıa<span class="_ _c"> </span>del<span class="_ _c"> </span>profesor<span class="_ _c"> </span>Evidio.</div><div class="t m0 xa h7 yf ff6 fs3 fc0 sc0 ls0 ws0">Mas<span class="_"> </span>informaci´<span class="_ _a"></span>on<span class="_"> </span>en<span class="_"> </span><span class="fc1">https://gith<span class="_ _3"></span>ub.com/jjavierdguezas/evidio-problemas-matematica<span class="fc0">.</span></span></div><div class="t m0 xb h7 y10 ff6 fs3 fc0 sc0 ls0 ws0">¡Las<span class="_ _c"> </span>con<span class="_ _12"></span>tribuciones<span class="_ _c"> </span>son<span class="_ _c"> </span>bienv<span class="_ _3"></span>enidas!</div><a class="l" href="https://github.com/jjavierdguezas/evidio-problemas-matematica"><div class="d m1" style="border-style:none;position:absolute;left:358.140654px;bottom:975.246222px;width:311.023000px;height:12.902000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf3" class="pf w0 h0" data-page-no="3"><div class="pc pc3 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xc h6 y8 ff4 fs3 fc0 sc0 ls0 ws0">ii</div><div class="t m0 xd h2 y11 ff1 fs0 fc0 sc0 ls0 ws0">´</div><div class="t m0 xb h2 ye ff1 fs0 fc0 sc0 ls0 ws0">Indice</div><div class="t m0 xb h7 y12 ff5 fs3 fc1 sc0 ls0 ws0">50<span class="_ _f"> </span>Lecciones<span class="_ _13"> </span>de<span class="_ _f"> </span>Matem´<span class="_ _14"></span>atica<span class="_ _15"> </span><span class="fc0">1</span></div><div class="t m0 xa h7 y13 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#1<span class="_ _c"> </span>-<span class="_ _f"> </span>Conozcamos<span class="_ _e"> </span>al<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _c"> </span>rect´<span class="_ _d"></span>angulo<span class="_ _6"> </span><span class="fc0">.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _17"> </span>1</span></div><div class="t m0 xa h7 y14 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#2<span class="_ _c"> </span>-<span class="_ _f"> </span>Rectas<span class="_ _e"> </span>y<span class="_ _c"> </span>Puntos<span class="_ _e"> </span>Notables<span class="_ _18"> </span><span class="fc0">.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _17"> </span>4</span></div><div class="t m0 xa h7 y15 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#3<span class="_ _c"> </span>-<span class="_ _f"> </span>Circunferencia<span class="_ _e"> </span>y<span class="_ _c"> </span>Cuadril´<span class="_ _a"></span>atero<span class="_ _19"> </span><span class="fc0">.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _1a"> </span>7</span></div><div class="t m0 xa h7 y16 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#4<span class="_ _c"> </span>-<span class="_ _f"> </span>Otros<span class="_ _e"> </span>T<span class="_ _b"></span>eoremas<span class="_ _1b"> </span><span class="fc0">.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _1c"> </span>10</span></div><div class="t m0 xa h7 y17 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#5<span class="_ _1d"> </span><span class="fc0">.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _1c"> </span>14</span></div><div class="t m0 xa h7 y18 ff6 fs3 fc1 sc0 ls0 ws0">Lecci´<span class="_ _d"></span>on<span class="_ _c"> </span>#6<span class="_ _1d"> </span><span class="fc0">.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _16"> </span>.<span class="_ _6"> </span>.<span class="_ _16"> </span>.<span class="_ _1c"> </span>18</span></div><a class="l" href="#pf4" data-dest-detail='[4,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:168.841203px;bottom:888.202876px;width:156.902000px;height:9.569000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf4" data-dest-detail='[4,"XYZ",101.905,551.318,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:861.983791px;width:238.023000px;height:11.689000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf7" data-dest-detail='[7,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:839.313569px;width:190.205000px;height:11.689000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfa" data-dest-detail='[10,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:816.643346px;width:208.932000px;height:11.689000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pfd" data-dest-detail='[13,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:793.971451px;width:142.629000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf11" data-dest-detail='[17,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:771.301229px;width:56.083000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a><a class="l" href="#pf15" data-dest-detail='[21,"XYZ",101.905,690.795,null]'><div class="d m1" style="border-style:none;position:absolute;left:196.221490px;bottom:748.631007px;width:56.083000px;height:11.690000px;background-color:rgba(255,255,255,0.000001);"></div></a></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf4" class="pf w0 h0" data-page-no="4"><div class="pc pc4 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 xb h2 ye ff1 fs0 fc0 sc0 ls0 ws0">50<span class="_ _0"> </span>Lecciones<span class="_ _0"> </span>de<span class="_ _0"> </span>Matem´<span class="_ _1"></span>atica</div><div class="t m0 xb h5 y19 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#1<span class="_ _6"> </span>-<span class="_ _16"> </span>Conozcamos<span class="_ _6"> </span>al<span class="_ _16"> </span>tri´<span class="_ _7"></span>angulo<span class="_ _6"> </span>rect´<span class="_ _7"></span>angulo</div><div class="t m0 xa h7 y1a ff6 fs3 fc0 sc0 ls0 ws0">Cualquier<span class="_ _c"> </span>estudiante<span class="_ _c"> </span>de<span class="_ _f"> </span>ense˜<span class="_ _d"></span>nanza<span class="_ _f"> </span>media<span class="_ _c"> </span>sab<span class="_ _9"></span>e<span class="_ _c"> </span>que<span class="_ _f"> </span>se<span class="_ _c"> </span>trata<span class="_ _f"> </span>de<span class="_ _c"> </span>un<span class="_ _f"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _f"> </span>que<span class="_ _c"> </span>tiene</div><div class="t m0 xb h7 y1b ff6 fs3 fc0 sc0 ls0 ws0">un<span class="_ _c"> </span>´<span class="_ _d"></span>angulo<span class="_ _f"> </span>con<span class="_ _e"> </span>amplitud<span class="_ _c"> </span>90</div><div class="t m0 xf h8 y1c ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x10 h7 y1b ff6 fs3 fc0 sc0 ls0 ws0">.<span class="_ _c"> </span>Sin<span class="_ _c"> </span>embargo<span class="_ _e"> </span>no<span class="_ _c"> </span>muc<span class="_ _3"></span>hos<span class="_ _c"> </span>sab<span class="_ _9"></span>en<span class="_ _e"> </span>la<span class="_ _f"> </span>can<span class="_ _3"></span>tidad<span class="_ _c"> </span>de<span class="_ _c"> </span>relaciones<span class="_ _c"> </span>que</div><div class="t m0 xb h7 y1d ff6 fs3 fc0 sc0 ls0 ws0">se<span class="_ _f"> </span>generan<span class="_ _f"> </span>en<span class="_ _f"> </span>ese<span class="_ _13"> </span>pol<span class="_ _10"></span>´<span class="_ _11"></span>ıgono.<span class="_ _f"> </span>Dediquemos<span class="_ _13"> </span>en<span class="_ _3"></span>tonces<span class="_ _f"> </span>un<span class="_ _13"> </span>tiempo<span class="_ _13"> </span>al<span class="_ _f"> </span>estudio<span class="_ _f"> </span>de<span class="_ _f"> </span>este<span class="_ _f"> </span>tri´<span class="_ _a"></span>angulo</div><div class="t m0 xb h7 y1e ff6 fs3 fc0 sc0 ls0 ws0">tan<span class="_ _c"> </span>“generoso”.</div><div class="t m0 x11 h9 y1f ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12 h9 y20 ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x12 h9 y21 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x13 h9 y22 ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">α</span></div><div class="t m0 x14 h9 y23 ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">β</span></div><div class="t m0 x15 h7 y24 ff6 fs3 fc0 sc0 ls0 ws0">1)<span class="_ _c"> </span><span class="ff5">T<span class="_ _10"></span>eorema<span class="_ _13"> </span>de<span class="_ _f"> </span>Pit´<span class="_ _14"></span>agoras</span></div><div class="t m0 x16 h9 y25 ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x17 ha y26 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x18 h7 y25 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x19 ha y26 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a h7 y25 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x1b ha y26 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x15 h7 y27 ff6 fs3 fc0 sc0 ls0 ws0">2)<span class="_ _c"> </span><span class="ff5">Razones<span class="_ _f"> </span>T<span class="_ _b"></span>rigonom´<span class="_ _14"></span>etricas</span></div><div class="t m0 x1c h7 y28 ff6 fs3 fc0 sc0 ls0 ws0">sen<span class="_ _1f"> </span><span class="ff8">α<span class="_ _20"> </span></span>=</div><div class="t m0 x1d h9 y29 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x1d h9 y2a ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x1e h7 y2b ff6 fs3 fc0 sc0 ls0 ws0">cos<span class="_ _1f"> </span><span class="ff8">α<span class="_ _20"> </span></span>=</div><div class="t m0 x1d h9 y2c ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1d h9 y2d ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x1c h7 y2e ff6 fs3 fc0 sc0 ls0 ws0">tan<span class="_ _1f"> </span><span class="ff8">α<span class="_ _20"> </span></span>=</div><div class="t m0 x1d h9 y2f ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x1d h9 y30 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1c h7 y31 ff6 fs3 fc0 sc0 ls0 ws0">sen<span class="_ _1f"> </span><span class="ff8">α<span class="_ _20"> </span></span>=<span class="_"> </span>cos<span class="_ _1f"> </span><span class="ff8">β</span></div><div class="t m0 xa h7 y32 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _c"> </span>V<span class="_ _b"></span>ea<span class="_ _f"> </span>que<span class="_ _f"> </span>basta<span class="_ _c"> </span>cono<span class="_ _9"></span>cer<span class="_ _c"> </span>la<span class="_ _f"> </span>longitud<span class="_ _c"> </span>de<span class="_ _f"> </span>dos<span class="_ _c"> </span>lados<span class="_ _f"> </span>o<span class="_ _c"> </span>la<span class="_ _f"> </span>amplitud<span class="_ _c"> </span>de<span class="_ _f"> </span>uno<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _f"> </span>´<span class="_ _d"></span>angulos</div><div class="t m0 xb h7 y33 ff6 fs3 fc0 sc0 ls0 ws0">agudos<span class="_ _21"> </span>y<span class="_ _21"> </span>la<span class="_ _21"> </span>longitud<span class="_ _21"> </span>de<span class="_ _21"> </span>uno<span class="_ _21"> </span>de<span class="_ _21"> </span>los<span class="_ _21"> </span>tres<span class="_ _21"> </span>lados<span class="_ _21"> </span>para<span class="_ _21"> </span>determinar<span class="_ _21"> </span>el<span class="_ _21"> </span>resto<span class="_ _21"> </span>de<span class="_ _21"> </span>los<span class="_ _21"> </span>cinco<span class="_ _21"> </span>elemen<span class="_ _12"></span>tos</div><div class="t m0 xb h7 y34 ff6 fs3 fc0 sc0 ls0 ws0">del<span class="_ _c"> </span>tri´<span class="_ _d"></span>angulo.</div><div class="t m0 x11 h9 y35 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12 h9 y36 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x1f h9 y37 ff8 fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x20 h9 y38 ff8 fs3 fc0 sc0 ls0 ws0">q</div><div class="t m0 x1f h9 y39 ff8 fs3 fc0 sc0 ls0 ws0">h</div><div class="t m0 x13 h9 y3a ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">α</span></div><div class="t m0 x14 h9 y3b ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">β</span></div><div class="t m0 x21 h9 y3c ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">ω</span></div><div class="t m0 x22 h9 y3d ff8 fs3 fc0 sc0 ls0 ws0"><span class="fc2 sc0">σ</span></div><div class="t m0 x15 h7 y3e ff6 fs3 fc0 sc0 ls0 ws0">3)<span class="_ _c"> </span><span class="ff5">Grup<span class="_ _9"></span>o<span class="_ _f"> </span>de<span class="_ _f"> </span>T<span class="_ _b"></span>eoremas<span class="_ _13"> </span>de<span class="_ _f"> </span>Pit´<span class="_ _14"></span>agoras</span></div><div class="t m0 x23 h7 y3f ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ff8">.</span>1)<span class="_ _22"> </span><span class="ff8">h</span></div><div class="t m0 x24 ha y40 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a h7 y3f ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">p<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>q</span></div><div class="t m0 x23 h7 y41 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ff8">.</span>2)<span class="_ _22"> </span><span class="ff8">a</span></div><div class="t m0 x24 ha y42 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a h7 y41 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>p</span></div><div class="t m0 x25 h9 y43 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x24 ha y44 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a h7 y43 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>q</span></div><div class="t m0 x26 h7 y45 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ff8">.</span>3)<span class="_ _22"> </span><span class="ff8">c</span></div><div class="t m0 x24 ha y46 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1a h7 y45 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x27 ha y46 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x28 h7 y45 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x29 ha y46 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa h7 y47 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_"> </span>Es<span class="_ _e"> </span>suficiente<span class="_"> </span>cono<span class="_ _9"></span>cer<span class="_"> </span>la<span class="_ _e"> </span>longitud<span class="_ _20"> </span>de<span class="_ _e"> </span>dos<span class="_ _e"> </span>de<span class="_ _e"> </span>los<span class="_"> </span>seis<span class="_ _e"> </span>segmentos<span class="_"> </span>determinados,<span class="_ _e"> </span>o<span class="_ _20"> </span>uno<span class="_ _e"> </span>de</div><div class="t m0 xb h7 y48 ff6 fs3 fc0 sc0 ls0 ws0">ellos<span class="_ _c"> </span>y<span class="_ _c"> </span>uno<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _f"> </span>cuatro<span class="_ _e"> </span>´<span class="_ _a"></span>angulos<span class="_ _c"> </span>determinados<span class="_ _c"> </span>para<span class="_ _c"> </span>calcular<span class="_ _c"> </span>el<span class="_ _f"> </span>v<span class="_ _b"></span>alor<span class="_ _f"> </span>del<span class="_ _e"> </span>resto<span class="_ _f"> </span>de<span class="_ _e"> </span>los<span class="_ _f"> </span>diez</div><div class="t m0 xb h7 y49 ff6 fs3 fc0 sc0 ls0 ws0">elemen<span class="_ _3"></span>tos</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf5" class="pf w0 h0" data-page-no="5"><div class="pc pc5 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb h7 y9 ff5 fs3 fc0 sc0 ls0 ws0">Demostraci´<span class="_ _14"></span>on<span class="_ _f"> </span>de<span class="_ _f"> </span>3)</div><div class="t m0 xa h7 y4a ff6 fs3 fc0 sc0 ls0 ws0">Sean<span class="_ _c"> </span><span class="ffa">4</span></div><div class="t m0 x2a ha y4b ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x2b h7 y4a ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ffa">4</span></div><div class="t m0 x2c ha y4b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2d h7 y4a ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ffa">4</span></div><div class="t m0 x2e ha y4b ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x2f h7 y4a ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>lados<span class="_ _c"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>h,<span class="_ _1f"> </span>p</span>),<span class="_ _c"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c</span>)<span class="_ _c"> </span>y<span class="_ _c"> </span>(<span class="ff8">b,<span class="_ _1f"> </span>h,<span class="_ _1f"> </span>q<span class="_ _9"></span></span>)<span class="_ _c"> </span>tenemos:</div><div class="t m0 x14 h7 y4c ffa fs3 fc0 sc0 ls0 ws0">4</div><div class="t m0 x30 ha y4d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x31 h7 y4c ffa fs3 fc0 sc0 ls0 ws0">∼<span class="_ _20"> </span>4</div><div class="t m0 x2c ha y4d ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x32 h7 y4c ff6 fs3 fc0 sc0 ls0 ws0">:</div><div class="t m0 x33 h9 y4e ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x33 h9 y4f ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x34 h7 y4c ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x3 h9 y4e ff8 fs3 fc0 sc0 ls0 ws0">h</div><div class="t m0 x35 h9 y4f ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x36 h7 y4c ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x37 h9 y4e ff8 fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x37 h9 y4f ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x38 h7 y4c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _21"> </span><span class="ff8">a</span></span></div><div class="t m0 x39 ha y50 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6 h7 y4c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>p</span></div><div class="t m0 x14 h7 y51 ffa fs3 fc0 sc0 ls0 ws0">4</div><div class="t m0 x30 ha y52 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x31 h7 y51 ffa fs3 fc0 sc0 ls0 ws0">∼<span class="_ _20"> </span>4</div><div class="t m0 x2c ha y52 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x32 h7 y51 ff6 fs3 fc0 sc0 ls0 ws0">:</div><div class="t m0 x33 h9 y53 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x33 h9 y54 ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x3a h7 y51 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x2f h9 y53 ff8 fs3 fc0 sc0 ls0 ws0">h</div><div class="t m0 x2f h9 y54 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x3b h7 y51 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x10 h9 y53 ff8 fs3 fc0 sc0 ls0 ws0">q</div><div class="t m0 x10 h9 y54 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x3c h7 y51 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _21"> </span><span class="ff8">b</span></span></div><div class="t m0 x3d ha y55 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x5 h7 y51 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>q</span></div><div class="t m0 x3e hb y56 ffb fs3 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e hb y57 ffb fs3 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e hb y58 ffb fs3 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e hb y59 ffb fs3 fc0 sc0 ls0 ws0"></div><div class="t m0 x3e hb y5a ffb fs3 fc0 sc0 ls0 ws0"></div><div class="t m0 x3f h7 y5b ff5 fs3 fc0 sc0 ls0 ws0">3.2)<span class="_ _f"> </span>T<span class="_ _b"></span>eorema<span class="_ _f"> </span>de<span class="_ _13"> </span>los<span class="_ _f"> </span>catetos</div><div class="t m0 x40 h7 y5c ffa fs3 fc0 sc0 ls0 ws0">4</div><div class="t m0 x41 ha y5d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x42 h7 y5c ffa fs3 fc0 sc0 ls0 ws0">∼<span class="_ _20"> </span>4</div><div class="t m0 x43 ha y5d ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x44 h7 y5c ff6 fs3 fc0 sc0 ls0 ws0">:</div><div class="t m0 x45 h9 y5e ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x45 h9 y5f ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x46 h7 y5c ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x47 h9 y5e ff8 fs3 fc0 sc0 ls0 ws0">h</div><div class="t m0 x47 h9 y5f ff8 fs3 fc0 sc0 ls0 ws0">q</div><div class="t m0 x13 h7 y5c ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x48 h9 y5e ff8 fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x48 h9 y5f ff8 fs3 fc0 sc0 ls0 ws0">h</div><div class="t m0 x49 h7 y5c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _21"> </span><span class="ff8">h</span></span></div><div class="t m0 x4a ha y60 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4b h7 y5c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">p<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>q<span class="_ _23"> </span><span class="ff5">3.1)<span class="_ _f"> </span>T<span class="_ _b"></span>eorema<span class="_ _f"> </span>de<span class="_ _13"> </span>la<span class="_ _f"> </span>altura</span></span></div><div class="t m0 xa h7 y61 ff6 fs3 fc0 sc0 ls0 ws0">Sumando<span class="_ _c"> </span>las<span class="_ _c"> </span>dos<span class="_ _c"> </span>ecuaciones<span class="_ _c"> </span>obtenidas<span class="_ _c"> </span>en<span class="_ _c"> </span>3<span class="ff8">.</span>2:</div><div class="t m0 x4c h9 y62 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x1 ha y63 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x1f h7 y62 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x4d ha y63 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4e h7 y62 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>p<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>q</span></div><div class="t m0 x4e h7 y64 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c</span>(<span class="ff8">p<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">q<span class="_ _9"></span></span>)</div><div class="t m0 x4e h7 y65 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>c</span></div><div class="t m0 x4e h7 y66 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">c</span></div><div class="t m0 x4f ha y67 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x50 h7 y66 ff5 fs3 fc0 sc0 ls0 ws0">3.3)<span class="_ _f"> </span>T<span class="_ _b"></span>eorema<span class="_ _f"> </span>de<span class="_ _13"> </span>Pit´<span class="_ _14"></span>agoras</div><div class="t m0 xa h7 y68 ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _c"> </span>adem´<span class="_ _d"></span>as<span class="_ _c"> </span>que<span class="_ _f"> </span>el<span class="_ _e"> </span>´<span class="_ _a"></span>area<span class="_ _c"> </span>del<span class="_ _c"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _c"> </span>p<span class="_ _9"></span>o<span class="_ _24"></span>demos<span class="_ _c"> </span>expresarla<span class="_ _c"> </span>como:</div><div class="t m0 x51 h7 y69 ff8 fs3 fc0 sc0 ls0 ws0">A<span class="_ _20"> </span><span class="ff6">=</span></div><div class="t m0 x52 h9 y6a ff8 fs3 fc0 sc0 ls0 ws0">ab</div><div class="t m0 x3d h7 y6b ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x53 h7 y69 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">A<span class="_ _20"> </span></span>=</div><div class="t m0 x54 h9 y6a ff8 fs3 fc0 sc0 ls0 ws0">ch</div><div class="t m0 x55 h7 y6b ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x56 h7 y69 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _4"></span><span class="ffa">⇒</span></div><div class="t m0 x57 h9 y6a ff8 fs3 fc0 sc0 ls0 ws0">ab</div><div class="t m0 x58 h9 y6b ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x59 h7 y69 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">h</span></div><div class="t m0 xa h7 y6c ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _13"> </span>tam<span class="_ _12"></span>bi<span class="_ _3"></span>´<span class="_ _25"></span>en<span class="_ _13"> </span>que<span class="_ _13"> </span><span class="ff8">σ<span class="_ _8"> </span></span>=<span class="_ _13"> </span><span class="ff8">β<span class="_ _6"> </span></span>y<span class="_ _13"> </span><span class="ff8">ω<span class="_ _13"> </span></span>=<span class="_ _13"> </span><span class="ff8">α<span class="_ _8"> </span></span>p<span class="_ _24"></span>or<span class="_ _13"> </span>ser<span class="_ _13"> </span>´<span class="_ _d"></span>angulos<span class="_ _8"> </span>agudos<span class="_ _13"> </span>con<span class="_ _13"> </span>lados<span class="_ _13"> </span>resp<span class="_ _24"></span>ectiv<span class="_ _3"></span>amen<span class="_ _12"></span>te</div><div class="t m0 xb h7 y6d ff6 fs3 fc0 sc0 ls0 ws0">p<span class="_ _24"></span>erp<span class="_ _24"></span>endiculares</div><div class="t m0 xa h7 y6e ff6 fs3 fc0 sc0 ls0 ws0">4)</div><div class="t m0 x5a h9 y6f ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _26"> </span>B</div><div class="t m0 x1 h9 y70 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x5b h9 y71 ff8 fs3 fc0 sc0 ls0 ws0">M</div><div class="t m0 x5c h7 y72 ff6 fs3 fc0 sc0 ls0 ws0">Sea<span class="_ _c"> </span><span class="ff8">M<span class="_ _8"> </span></span>punto<span class="_ _e"> </span>medio<span class="_ _c"> </span>de<span class="_ _c"> </span><span class="ff8">AB</span></div><div class="t m0 x5c h7 y73 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _21"> </span><span class="ff8">AM<span class="_ _13"> </span><span class="ff6">=<span class="_"> </span></span>M<span class="_ _27"></span>B<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _27"></span>M</span></span></div><div class="t m0 x5d h7 y74 ff5 fs3 fc0 sc0 ls0 ws0">T<span class="_ _10"></span>eorema<span class="_ _13"> </span>de<span class="_ _f"> </span>la<span class="_ _13"> </span>mediana<span class="_ _f"> </span>de<span class="_ _13"> </span>la</div><div class="t m0 x1e h7 y75 ff5 fs3 fc0 sc0 ls0 ws0">hip<span class="_ _24"></span>oten<span class="_ _3"></span>usa</div><div class="t m0 xb h7 y76 ff5 fs3 fc0 sc0 ls0 ws0">Demostraci´<span class="_ _14"></span>on</div><div class="t m0 x5e h7 y77 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-)<span class="_ _16"> </span>Sea<span class="_ _c"> </span><span class="ff8">M<span class="_ _27"> </span>H<span class="_ _f"> </span></span></span>⊥<span class="_ _20"> </span><span class="ff8">C<span class="_ _28"></span>B<span class="_ _f"> </span><span class="ff6">en<span class="_ _c"> </span></span>H<span class="_ _f"> </span><span class="ff6">=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">M<span class="_ _27"></span>H<span class="_ _13"> </span><span class="ff6">es<span class="_ _c"> </span>la<span class="_ _c"> </span>paralela<span class="_ _c"> </span>media<span class="_ _c"> </span>de<span class="_ _c"> </span></span>AC</span></span></span></span></div><div class="t m0 x12 h7 y78 ffc fs3 fc0 sc0 ls0 ws0">∴<span class="_ _20"> </span><span class="ff8">M<span class="_ _27"></span>H<span class="_ _13"> </span><span class="ff6">es<span class="_ _c"> </span>altura<span class="_ _c"> </span>y<span class="_ _c"> </span>mediana<span class="_ _f"> </span>de<span class="_ _e"> </span></span>B<span class="_ _9"></span>C<span class="_ _13"> </span><span class="ff6">en<span class="_ _c"> </span><span class="ffa">4</span></span>C<span class="_ _28"></span>M<span class="_ _27"> </span>B</span></div><div class="t m0 x12 h7 y79 ff6 fs3 fc0 sc0 ls0 ws0">o<span class="_ _c"> </span>sea,<span class="_ _c"> </span><span class="ffa">4<span class="ff8">C<span class="_ _28"></span>M<span class="_ _27"></span>B<span class="_ _f"> </span></span></span>es<span class="_ _f"> </span>is´<span class="_ _d"></span>osceles<span class="_ _c"> </span>de<span class="_ _c"> </span>base<span class="_ _c"> </span><span class="ff8">C<span class="_ _28"></span>B<span class="_ _9"></span></span>,<span class="_ _c"> </span>etc...</div><div class="t m0 x5e h7 y7a ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-)<span class="_ _16"> </span>Sea<span class="_ _1e"> </span><span class="ff8">D<span class="_ _21"> </span></span>un<span class="_ _1e"> </span>punto<span class="_ _1e"> </span>de<span class="_ _1e"> </span>la<span class="_ _1e"> </span>prolongaci´<span class="_ _d"></span>on<span class="_ _1e"> </span>de<span class="_ _1e"> </span><span class="ff8">C<span class="_ _9"></span>M<span class="_ _29"> </span></span>;<span class="_ _1e"> </span><span class="ff8">C<span class="_ _9"></span>M<span class="_ _13"> </span></span>=<span class="_"> </span><span class="ff8">M<span class="_ _27"></span>D<span class="_ _e"> </span></span>=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _21"> </span><span class="ff8">AC<span class="_ _28"></span>B<span class="_ _9"></span>D<span class="_ _21"> </span><span class="ff6">es<span class="_ _1e"> </span>paralelogramo-</span></span></span></span></div><div class="t m0 x5f h7 y7b ff6 fs3 fc0 sc0 ls0 ws0">rect´<span class="_ _d"></span>angulo<span class="_ _c"> </span>y<span class="_ _c"> </span><span class="ff8">AM<span class="_ _13"> </span></span>=<span class="_"> </span><span class="ff8">M<span class="_ _27"> </span>B<span class="_ _c"> </span></span>=<span class="_"> </span><span class="ff8">C<span class="_ _28"></span>M<span class="_ _13"> </span></span>=<span class="_"> </span><span class="ff8">M<span class="_ _27"></span>D<span class="_ _c"> </span></span>p<span class="_ _9"></span>or<span class="_ _c"> </span>propiedades<span class="_ _c"> </span>de<span class="_ _c"> </span>un<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo</div><div class="t m0 x5e h7 y7c ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-)<span class="_ _16"> </span><span class="ff8">M<span class="_ _6"> </span></span>es<span class="_ _f"> </span>circuncen<span class="_ _3"></span>tro<span class="_ _f"> </span>del<span class="_ _f"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _13"> </span></span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _e"> </span><span class="ff8">AM<span class="_ _8"> </span><span class="ff6">=<span class="_ _c"> </span></span>M<span class="_ _27"></span>B<span class="_ _f"> </span><span class="ff6">=<span class="_ _c"> </span></span>M<span class="_ _27"></span>C<span class="_ _13"> </span><span class="ff6">=<span class="_ _f"> </span>radio<span class="_ _c"> </span>de<span class="_ _f"> </span>la<span class="_ _f"> </span>circunferencia</span></span></span></span></div><div class="t m0 x5f h7 y7d ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>cen<span class="_ _12"></span>tro<span class="_ _c"> </span><span class="ff8">M<span class="_ _8"> </span></span>que<span class="_ _c"> </span>pasa<span class="_ _f"> </span>por<span class="_ _c"> </span><span class="ff8">A</span>,<span class="_ _c"> </span><span class="ff8">B<span class="_ _13"> </span></span>y<span class="_ _c"> </span><span class="ff8">C<span class="_ _13"> </span></span>(rec<span class="_ _10"></span>´<span class="_ _11"></span>ıpro<span class="_ _24"></span>co<span class="_ _c"> </span>del<span class="_ _c"> </span>teorema<span class="_ _c"> </span>de<span class="_ _c"> </span>T<span class="_ _b"></span>ales)</div><div class="t m0 xb h7 y7e ff6 fs3 fc0 sc0 ls0 ws0">5)<span class="_ _c"> </span>En<span class="_ _c"> </span>to<span class="_ _24"></span>do<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _e"> </span>rect´<span class="_ _a"></span>angulo<span class="_ _c"> </span>con<span class="_ _c"> </span>un<span class="_ _c"> </span>´<span class="_ _a"></span>angulo<span class="_ _e"> </span>agudo<span class="_ _c"> </span>de<span class="_ _c"> </span>30</div><div class="t m0 x60 h8 y7f ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x16 h7 y7e ff6 fs3 fc0 sc0 ls0 ws0">tenemos:</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf6" class="pf w0 h0" data-page-no="6"><div class="pc pc6 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 x61 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">i)<span class="_ _16"> </span>El<span class="_ _f"> </span>cateto<span class="_ _13"> </span>opuesto<span class="_ _f"> </span>al<span class="_ _13"> </span>´<span class="_ _d"></span>angulo<span class="_ _13"> </span>de<span class="_ _f"> </span>30</div><div class="t m0 x62 h8 y80 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x63 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">mide<span class="_ _f"> </span>la<span class="_ _13"> </span>longitud<span class="_ _13"> </span>de<span class="_ _f"> </span>la<span class="_ _13"> </span>hipotenusa<span class="_ _f"> </span>dividida<span class="_ _13"> </span>p<span class="_ _24"></span>or</div><div class="t m0 x5f h7 y81 ff6 fs3 fc0 sc0 ls0 ws0">dos<span class="_ _c"> </span>(<span class="ff8">a<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">c<span class="_ _1e"> </span><span class="ffa">÷<span class="_ _1e"> </span></span></span>2)</div><div class="t m0 x64 h7 y82 ff6 fs3 fc0 sc0 ls0 ws0">ii)<span class="_ _16"> </span>El<span class="_ _c"> </span>cateto<span class="_ _f"> </span>adyacen<span class="_ _3"></span>te<span class="_ _f"> </span>al<span class="_ _f"> </span>´<span class="_ _a"></span>angulo<span class="_ _f"> </span>de<span class="_ _c"> </span>30</div><div class="t m0 x63 h8 y83 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x3e h7 y82 ff6 fs3 fc0 sc0 ls0 ws0">mide</div><div class="t m0 x65 h7 y84 ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x66 h7 y82 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="_ _f"> </span>v<span class="_ _3"></span>eces<span class="_ _f"> </span>la<span class="_ _f"> </span>longitud<span class="_ _f"> </span>del<span class="_ _f"> </span>cateto<span class="_ _f"> </span>opuesto</div><div class="t m0 x5f h7 y85 ff6 fs3 fc0 sc0 ls0 ws0">al<span class="_ _c"> </span>´<span class="_ _d"></span>angulo<span class="_ _c"> </span>de<span class="_ _f"> </span>30</div><div class="t m0 x46 h8 y86 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x67 h7 y85 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">b<span class="_ _20"> </span></span>=</div><div class="t m0 x68 h7 y87 ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x51 h7 y85 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ff8">a</span>)</div><div class="t m0 xb h7 y88 ff5 fs3 fc0 sc0 ls0 ws0">Demostraci´<span class="_ _14"></span>on</div><div class="t m0 x11 h9 y89 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x11 h9 y8a ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x69 h9 y8b ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x69 h9 y8c ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x69 h9 y8d ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x21 hc y8e ff6 fs5 fc0 sc0 ls0 ws0"><span class="fc2 sc0">60</span></div><div class="t m0 x1 hd y8f ff7 fs6 fc0 sc0 ls0 ws0"><span class="fc2 sc0">◦</span></div><div class="t m0 x21 hc y90 ff6 fs5 fc0 sc0 ls0 ws0"><span class="fc2 sc0">60</span></div><div class="t m0 x1 hd y91 ff7 fs6 fc0 sc0 ls0 ws0"><span class="fc2 sc0">◦</span></div><div class="t m0 x6a hc y92 ff6 fs5 fc0 sc0 ls0 ws0"><span class="fc2 sc0">30</span></div><div class="t m0 x6b hd y93 ff7 fs6 fc0 sc0 ls0 ws0"><span class="fc2 sc0">◦</span></div><div class="t m0 x6a hc y94 ff6 fs5 fc0 sc0 ls0 ws0"><span class="fc2 sc0">30</span></div><div class="t m0 x6b hd y95 ff7 fs6 fc0 sc0 ls0 ws0"><span class="fc2 sc0">◦</span></div><div class="t m0 x15 h7 y96 ff6 fs3 fc0 sc0 ls0 ws0">Reflejando<span class="_ _1e"> </span>el<span class="_ _1e"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _1e"> </span>dado<span class="_ _1e"> </span>de<span class="_ _1e"> </span>lados<span class="_ _1e"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c</span>)</div><div class="t m0 x15 h7 y97 ff6 fs3 fc0 sc0 ls0 ws0">sobre<span class="_ _2b"> </span>el<span class="_ _2b"> </span>cateto<span class="_ _2b"> </span><span class="ff8">b<span class="_ _2b"> </span></span>obtengo<span class="_ _2b"> </span>un<span class="_ _2b"> </span>tri´<span class="_ _d"></span>angulo</div><div class="t m0 x15 h7 y98 ff6 fs3 fc0 sc0 ls0 ws0">equil´<span class="_ _d"></span>atero</div><div class="t m0 x15 h7 y99 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _c"> </span><span class="ff6">i)<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span></span>=</span></span></div><div class="t m0 x6c h9 y9a ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x6c h7 y9b ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6d h7 y9c ff6 fs3 fc0 sc0 ls0 ws0">ii)<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span></span>=</div><div class="t m0 x26 h7 y9d ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x6e h7 y9c ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ff8">a<span class="_ _c"> </span></span>(p<span class="_ _24"></span>or<span class="_ _c"> </span>T<span class="_ _b"></span>eo.<span class="_ _c"> </span>de<span class="_ _c"> </span>Pit´<span class="_ _a"></span>agoras)</div><div class="t m0 x15 h7 y9e ff6 fs3 fc0 sc0 ls0 ws0">nota:<span class="_ _c"> </span>De<span class="_ _c"> </span>aqu<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _f"> </span>se<span class="_ _c"> </span>obtienen<span class="_ _c"> </span>las<span class="_ _f"> </span>razones<span class="_ _e"> </span>trigo-</div><div class="t m0 x15 h7 y9f ff6 fs3 fc0 sc0 ls0 ws0">nom<span class="_ _3"></span>´<span class="_ _25"></span>etricas<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>´<span class="_ _a"></span>angulos<span class="_ _e"> </span>30</div><div class="t m0 x28 h8 ya0 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x6f h7 y9f ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span>60</div><div class="t m0 x70 h8 ya0 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 xb h7 ya1 ff6 fs3 fc0 sc0 ls0 ws0">6)<span class="_ _c"> </span>En<span class="_ _c"> </span>to<span class="_ _24"></span>do<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _e"> </span>rect´<span class="_ _a"></span>angulo<span class="_ _c"> </span>e<span class="_ _c"> </span>is´<span class="_ _d"></span>osceles<span class="_ _f"> </span>tenemos:</div><div class="t m0 x5f h7 ya2 ff6 fs3 fc0 sc0 ls0 ws0">La<span class="_"> </span>longitud<span class="_"> </span>de<span class="_"> </span>la<span class="_ _20"> </span>hip<span class="_ _24"></span>otenusa<span class="_"> </span>es<span class="_"> </span>igual<span class="_"> </span>a</div><div class="t m0 x71 h7 ya3 ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x72 h7 ya2 ff6 fs3 fc0 sc0 ls0 ws0">2<span class="_"> </span>veces<span class="_"> </span>la<span class="_"> </span>longitud<span class="_"> </span>de<span class="_"> </span>los<span class="_"> </span>catetos<span class="_"> </span>(<span class="ff8">c<span class="_ _20"> </span></span>=</div><div class="t m0 x73 h7 ya3 ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x74 h7 ya2 ff6 fs3 fc0 sc0 ls0 ws0">2<span class="ff8">s</span>)</div><div class="t m0 x5f h7 ya4 ff6 fs3 fc0 sc0 ls0 ws0">Esto<span class="_ _c"> </span>es<span class="_ _c"> </span>resultado<span class="_ _c"> </span>de<span class="_ _c"> </span>aplicar<span class="_ _c"> </span>teorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Pit´<span class="_ _a"></span>agoras<span class="_ _c"> </span>con<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">b</span></div><div class="t m0 x5f h7 ya5 ff6 fs3 fc0 sc0 ls0 ws0">nota:<span class="_ _c"> </span>de<span class="_ _c"> </span>aqu<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>se<span class="_ _c"> </span>obtienen<span class="_ _c"> </span>las<span class="_ _c"> </span>razones<span class="_ _c"> </span>trigonom´<span class="_ _a"></span>etricas<span class="_ _c"> </span>del<span class="_ _c"> </span>´<span class="_ _d"></span>angulo<span class="_ _f"> </span>de<span class="_ _e"> </span>45</div><div class="t m0 x75 h8 ya6 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 xb h7 ya7 ff5 fs3 fc0 sc0 ls0 ws0">*<span class="_ _f"> </span><span class="ff6">7)<span class="_ _c"> </span>En<span class="_ _f"> </span>to<span class="_ _24"></span>do<span class="_ _f"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _c"> </span>rect´<span class="_ _a"></span>angulo,<span class="_ _f"> </span>la<span class="_ _c"> </span>suma<span class="_ _f"> </span>de<span class="_ _f"> </span>la<span class="_ _f"> </span>longitud<span class="_ _f"> </span>del<span class="_ _f"> </span>inradio<span class="_ _c"> </span>y<span class="_ _f"> </span>el<span class="_ _f"> </span>circunradio<span class="_ _f"> </span>es</span></div><div class="t m0 xb h7 ya8 ff6 fs3 fc0 sc0 ls0 ws0">igual<span class="_ _c"> </span>a<span class="_ _c"> </span>la<span class="_ _c"> </span>media<span class="_ _c"> </span>aritm´<span class="_ _a"></span>etica<span class="_ _e"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>catetos.</div><div class="t m0 xb h7 ya9 ff5 fs3 fc0 sc0 ls0 ws0">Demostraci´<span class="_ _14"></span>on</div><div class="t m0 x11 h9 yaa ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _26"> </span>B</div><div class="t m0 x76 h9 yab ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x2c h9 yac ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x2b h9 yad ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x11 h9 yae ff8 fs3 fc0 sc0 ls0 ws0">R<span class="_ _2c"> </span>O</div><div class="t m0 x77 h9 yaf ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x78 h9 yb0 ff8 fs3 fc0 sc0 ls0 ws0">r</div><div class="t m0 x30 h9 yb1 ff8 fs3 fc0 sc0 ls0 ws0">r<span class="_ _2d"> </span>y</div><div class="t m0 x2f h9 yb2 ff8 fs3 fc0 sc0 ls0 ws0">y</div><div class="t m0 x31 h9 yb3 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x15 h7 yb4 ff6 fs3 fc0 sc0 ls0 ws0">Sean<span class="_ _1b"> </span><span class="ff8">P<span class="_ _1f"> </span></span>,<span class="_ _1b"> </span><span class="ff8">Q</span>,<span class="_ _2e"> </span><span class="ff8">R<span class="_ _2e"> </span></span>pun<span class="_ _3"></span>tos<span class="_ _2e"> </span>de<span class="_ _1b"> </span>tangencia<span class="_ _2e"> </span>del</div><div class="t m0 x15 h7 yb5 ff6 fs3 fc0 sc0 ls0 ws0">inc<span class="_ _10"></span>´<span class="_ _11"></span>ırculo<span class="_ _e"> </span>del<span class="_ _e"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _13"> </span></span></span>con<span class="_ _20"> </span>los<span class="_ _c"> </span>lados<span class="_ _e"> </span><span class="ff8">AB<span class="_ _9"></span></span>,<span class="_ _e"> </span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _28"></span></span>,</div><div class="t m0 x15 h7 yb6 ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _9"></span>A<span class="ff6">,<span class="_ _f"> </span>tenemos:</span></div><div class="t m0 x66 h7 yb7 ff8 fs3 fc0 sc0 ls0 ws0">AR<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>AP<span class="_ _13"> </span><span class="ff6">=<span class="_"> </span></span>x</div><div class="t m0 x66 h7 yb8 ff8 fs3 fc0 sc0 ls0 ws0">RC<span class="_ _f"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _9"></span>Q<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>r<span class="_ _f"> </span><span class="ff6">(inradio)</span></div><div class="t m0 x66 h7 yb9 ff8 fs3 fc0 sc0 ls0 ws0">P<span class="_ _29"> </span>B<span class="_ _c"> </span><span class="ff6">=<span class="_"> </span></span>QB<span class="_ _c"> </span><span class="ff6">=<span class="_"> </span></span>y</div><div class="t m0 x79 h7 yba ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _9"></span>Q<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>QB<span class="_ _c"> </span><span class="ff6">=<span class="_"> </span></span>r<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>y</span></span></div><div class="t m0 x35 h7 ybb ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>AR<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>RC<span class="_ _f"> </span><span class="ff6">=<span class="_"> </span></span>x<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>r</div><div class="t m0 x35 h7 ybc ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>AP<span class="_ _f"> </span><span class="ff6">+<span class="_ _1e"> </span></span>P<span class="_ _29"> </span>B<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>x<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>y<span class="_ _c"> </span><span class="ff6">=<span class="_"> </span>di´<span class="_ _d"></span>ametro<span class="_ _f"> </span>del<span class="_ _e"> </span>circunc<span class="_ _10"></span>´<span class="_ _11"></span>ırculo</span></div><div class="t m0 x4e h7 ybd ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>r<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>y<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>x<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>r<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span>2</span>R<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span>2</span>r</span></span></div><div class="t m0 x7a h7 ybe ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">r<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>R<span class="_ _20"> </span><span class="ff6">=</span></span></span></div><div class="t m0 x68 h7 ybf ff8 fs3 fc0 sc0 ls0 ws0">a<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b</div><div class="t m0 x51 h7 yc0 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa h7 y49 ff6 fs3 fc0 sc0 ls0 ws0">8)<span class="_ _c"> </span>,<span class="_ _c"> </span>9).<span class="_ _c"> </span>10),<span class="_ _c"> </span>...<span class="_ _c"> </span>pueden<span class="_ _c"> </span>ser<span class="_ _c"> </span>sugerencias<span class="_ _f"> </span>de<span class="_ _e"> </span>los<span class="_ _c"> </span>lectores<span class="_ _f"> </span>a<span class="_ _e"> </span>este<span class="_ _c"> </span>humilde<span class="_ _e"> </span>traba<span class="_ _9"></span>jo.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf7" class="pf w0 h0" data-page-no="7"><div class="pc pc7 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">4</div><div class="t m0 xb h5 yc1 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#2<span class="_ _6"> </span>-<span class="_ _16"> </span>Rectas<span class="_ _6"> </span>y<span class="_ _16"> </span>Pun<span class="_ _3"></span>tos<span class="_ _6"> </span>Notables</div><div class="t m0 xa h7 yc2 ff6 fs3 fc0 sc0 ls0 ws0">Presta<span class="_ _f"> </span>m<span class="_ _3"></span>ucha<span class="_ _f"> </span>atenci´<span class="_ _d"></span>on<span class="_ _f"> </span>a<span class="_ _f"> </span>estas<span class="_ _f"> </span>notas,<span class="_ _f"> </span>de<span class="_ _f"> </span>seguro<span class="_ _f"> </span>aprender´<span class="_ _a"></span>as<span class="_ _f"> </span>cosas<span class="_ _f"> </span>m<span class="_ _3"></span>uy<span class="_ _f"> </span>nov<span class="_ _3"></span>edosas<span class="_ _f"> </span>que</div><div class="t m0 xb h7 yc3 ff6 fs3 fc0 sc0 ls0 ws0">servir´<span class="_ _d"></span>an<span class="_ _c"> </span>para<span class="_ _c"> </span>elev<span class="_ _3"></span>ar<span class="_ _c"> </span>tu<span class="_ _c"> </span>cultura<span class="_ _f"> </span>matem´<span class="_ _d"></span>atica.</div><div class="t m0 xa h7 yc4 ff6 fs3 fc0 sc0 ls0 ws0">i)<span class="_ _8"> </span>En<span class="_ _13"> </span>to<span class="_ _24"></span>do<span class="_ _8"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _13"> </span>hay<span class="_ _13"> </span>para<span class="_ _8"> </span>cada<span class="_ _8"> </span>lado<span class="_ _8"> </span>una<span class="_ _8"> </span>altura,<span class="_ _8"> </span>una<span class="_ _8"> </span>mediana,<span class="_ _13"> </span>una<span class="_ _8"> </span>mediatriz<span class="_ _8"> </span>y</div><div class="t m0 xb h7 yc5 ff6 fs3 fc0 sc0 ls0 ws0">para<span class="_ _c"> </span>cada<span class="_ _c"> </span>´<span class="_ _a"></span>angulo<span class="_ _e"> </span>una<span class="_ _f"> </span>bisectriz.<span class="_ _e"> </span>cada<span class="_ _c"> </span>una<span class="_ _f"> </span>de<span class="_ _e"> </span>estas<span class="_ _f"> </span>rectas<span class="_ _e"> </span>concurren<span class="_ _c"> </span>en<span class="_ _f"> </span>un<span class="_ _e"> </span>punto<span class="_ _e"> </span>llamado:</div><div class="t m0 xb h7 yc6 ff6 fs3 fc0 sc0 ls0 ws0">orto<span class="_ _24"></span>cen<span class="_ _3"></span>tro,<span class="_ _f"> </span>baricen<span class="_ _3"></span>tro,<span class="_ _c"> </span>circuncentro<span class="_ _e"> </span>e<span class="_ _c"> </span>incentro<span class="_ _e"> </span>(<span class="ff8">H<span class="_ _24"></span>,<span class="_ _1f"> </span>G,<span class="_ _1f"> </span>T<span class="_ _28"></span>,<span class="_ _1f"> </span>I<span class="_ _27"></span></span>)</div><div class="t m0 xa h7 yc7 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-<span class="_ _f"> </span>alturas</span></div><div class="t m0 x7b h9 yc8 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 yc9 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x7c h9 yca ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x7d h9 ycb ff8 fs3 fc0 sc0 ls0 ws0">H</div><div class="t m0 x7e h7 ycc ff6 fs3 fc0 sc0 ls0 ws0">Segmen<span class="_ _3"></span>tos<span class="_ _c"> </span>que<span class="_ _f"> </span>“parten”<span class="_ _e"> </span>de<span class="_ _c"> </span>cada<span class="_ _c"> </span>v´<span class="_ _a"></span>ertice<span class="_ _c"> </span>y<span class="_ _c"> </span>“caen”<span class="_ _c"> </span>p<span class="_ _24"></span>erp<span class="_ _24"></span>en-</div><div class="t m0 x7e h7 ycd ff6 fs3 fc0 sc0 ls0 ws0">dicularmen<span class="_ _3"></span>te<span class="_ _6"> </span>en<span class="_ _8"> </span>los<span class="_ _6"> </span>lados<span class="_ _8"> </span>opuestos.<span class="_ _6"> </span>V<span class="_ _10"></span>emos<span class="_ _6"> </span>que<span class="_ _8"> </span><span class="ff8">H<span class="_ _2f"> </span></span>es<span class="_ _8"> </span>un</div><div class="t m0 x7e h7 yce ff6 fs3 fc0 sc0 ls0 ws0">pin<span class="_ _3"></span>to<span class="_ _e"> </span>interior<span class="_"> </span>del<span class="_ _e"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _e"> </span>si<span class="_ _e"> </span>este<span class="_ _20"> </span>es<span class="_ _e"> </span>acut´<span class="_ _a"></span>angulo,<span class="_"> </span>p<span class="_ _24"></span>ero<span class="_ _e"> </span>si<span class="_ _e"> </span>es</div><div class="t m0 x7e h7 ycf ff6 fs3 fc0 sc0 ls0 ws0">un<span class="_ _e"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _e"> </span>obtus´<span class="_ _d"></span>angulo<span class="_ _c"> </span>en<span class="_ _12"></span>tonces<span class="_ _e"> </span><span class="ff8">H<span class="_ _13"> </span></span>es<span class="_ _e"> </span>un<span class="_ _c"> </span>punto<span class="_"> </span>exterior</div><div class="t m0 x7e h7 yd0 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _f"> </span>si<span class="_ _f"> </span>el<span class="_ _f"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _f"> </span>es<span class="_ _f"> </span>rect´<span class="_ _a"></span>angulo<span class="_ _f"> </span>en<span class="_ _12"></span>tonces<span class="_ _f"> </span><span class="ff8">H<span class="_ _6"> </span></span>coincide<span class="_ _f"> </span>con<span class="_ _f"> </span>el</div><div class="t m0 x7e h7 yd1 ff6 fs3 fc0 sc0 ls0 ws0">v<span class="_ _3"></span>´<span class="_ _25"></span>ertice<span class="_ _c"> </span>del<span class="_ _c"> </span>´<span class="_ _d"></span>angulo<span class="_ _f"> </span>recto</div><div class="t m0 xa h7 yd2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-<span class="_ _f"> </span>medianas</span></div><div class="t m0 x7b h9 yd3 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 yd4 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x7c h9 yd5 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x4d h9 yd6 ff8 fs3 fc0 sc0 ls0 ws0">G</div><div class="t m0 x7f h9 yd7 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x80 h9 yd8 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x81 h9 yd9 ff8 fs3 fc0 sc0 ls0 ws0">R</div><div class="t m0 x7e h7 yda ff6 fs3 fc0 sc0 ls0 ws0">Segmen<span class="_ _3"></span>tos<span class="_ _6"> </span>que<span class="_ _6"> </span>“parten”<span class="_ _6"> </span>de<span class="_ _6"> </span>cada<span class="_ _6"> </span>v´<span class="_ _a"></span>ertice<span class="_ _6"> </span>y<span class="_ _6"> </span>“caen”<span class="_ _6"> </span>en<span class="_ _6"> </span>el</div><div class="t m0 x7e h7 ydb ff6 fs3 fc0 sc0 ls0 ws0">pun<span class="_ _3"></span>to<span class="_ _f"> </span>medio<span class="_ _f"> </span>de<span class="_ _c"> </span>cada<span class="_ _f"> </span>lado.<span class="_ _f"> </span>V<span class="_ _10"></span>emos<span class="_ _f"> </span>que<span class="_ _f"> </span><span class="ff8">G<span class="_ _c"> </span></span>siempre<span class="_ _f"> </span>v<span class="_ _3"></span>a<span class="_ _c"> </span>a<span class="_ _f"> </span>ser</div><div class="t m0 x7e h7 ydc ff6 fs3 fc0 sc0 ls0 ws0">un<span class="_ _c"> </span>pun<span class="_ _12"></span>to<span class="_ _c"> </span>in<span class="_ _12"></span>terior<span class="_ _c"> </span>del<span class="_ _c"> </span>tri´<span class="_ _d"></span>angulo</div><div class="t m0 x82 h7 ydd ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span><span class="ff8">AG<span class="_ _21"> </span></span>=<span class="_"> </span>2<span class="ff8">GP<span class="_ _1f"> </span></span>,<span class="_ _e"> </span><span class="ff8">B<span class="_ _9"></span>G<span class="_ _20"> </span></span>=<span class="_"> </span>2<span class="ff8">GQ</span>,<span class="_ _c"> </span><span class="ff8">C<span class="_ _28"></span>G<span class="_ _20"> </span></span>=<span class="_"> </span>2<span class="ff8">GR</span></div><div class="t m0 x83 h7 yde ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">P<span class="_ _27"> </span>Q</span>,<span class="_ _f"> </span><span class="ff8">QR<span class="_ _c"> </span></span>y<span class="_ _f"> </span><span class="ff8">RP<span class="_ _6"> </span></span>son<span class="_ _f"> </span>las<span class="_ _c"> </span>paralelas<span class="_ _f"> </span>medias<span class="_ _c"> </span>de<span class="_ _c"> </span><span class="ff8">AB<span class="_ _9"></span></span>,<span class="_ _f"> </span><span class="ff8">B<span class="_ _24"></span>C</span></div><div class="t m0 x84 h7 ydf ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">C<span class="_ _28"></span>A<span class="_ _c"> </span></span>resp<span class="_ _24"></span>ectiv<span class="_ _3"></span>amen<span class="_ _3"></span>te</div><div class="t m0 x82 h7 ye0 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Los<span class="_ _30"> </span><span class="ffa">4<span class="ff8">AGR</span></span>,<span class="_ _30"> </span><span class="ffa">4<span class="ff8">B<span class="_ _9"></span>GR<span class="_ _24"></span></span></span>,<span class="_ _30"> </span><span class="ffa">4<span class="ff8">B<span class="_ _9"></span>GP<span class="_ _29"> </span></span></span>,<span class="_ _2"> </span><span class="ffa">4<span class="ff8">C<span class="_ _28"></span>GP<span class="_ _29"> </span></span></span>,<span class="_ _30"> </span><span class="ffa">4<span class="ff8">C<span class="_ _28"></span>GQ<span class="_ _2"> </span></span></span>y</div><div class="t m0 x84 h7 ye1 ffa fs3 fc0 sc0 ls0 ws0">4<span class="ff8">AGQ<span class="_ _c"> </span><span class="ff6">tienen<span class="_ _c"> </span>la<span class="_ _c"> </span>misma<span class="_ _c"> </span>´<span class="_ _a"></span>area</span></span></div><div class="t m0 xa h7 ye2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-<span class="_ _f"> </span>mediatrices</span></div><div class="t m0 x7b h9 ye3 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 ye4 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x7c h9 ye5 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x42 h9 ye6 ff8 fs3 fc0 sc0 ls0 ws0">T</div><div class="t m0 x7f h9 ye7 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x80 h9 ye8 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x85 h9 ye9 ff8 fs3 fc0 sc0 ls0 ws0">R</div><div class="t m0 x7e h7 yea ff6 fs3 fc0 sc0 ls0 ws0">Rectas<span class="_"> </span>p<span class="_ _24"></span>erp<span class="_ _24"></span>endiculares<span class="_"> </span>a<span class="_"> </span>cada<span class="_"> </span>lado<span class="_"> </span>que<span class="_"> </span>pasan<span class="_"> </span>por<span class="_"> </span>el<span class="_"> </span>punto</div><div class="t m0 x7e h7 yeb ff6 fs3 fc0 sc0 ls0 ws0">medio<span class="_ _e"> </span>de<span class="_ _c"> </span>cada<span class="_ _c"> </span>lado.<span class="_ _c"> </span>V<span class="_ _b"></span>emos<span class="_ _e"> </span>que<span class="_ _c"> </span><span class="ff8">T<span class="_ _6"> </span></span>es<span class="_ _e"> </span>un<span class="_ _c"> </span>punto<span class="_ _e"> </span>in<span class="_ _3"></span>terior<span class="_ _c"> </span>del</div><div class="t m0 x7e h7 yec ff6 fs3 fc0 sc0 ls0 ws0">tri´<span class="_ _d"></span>angulo<span class="_ _f"> </span>si<span class="_ _c"> </span>este<span class="_ _f"> </span>es<span class="_ _c"> </span>acut´<span class="_ _d"></span>angulo,<span class="_ _f"> </span>p<span class="_ _24"></span>ero<span class="_ _c"> </span>si<span class="_ _f"> </span>es<span class="_ _c"> </span>obtus´<span class="_ _d"></span>angulo<span class="_ _f"> </span>en-</div><div class="t m0 x7e h7 yed ff6 fs3 fc0 sc0 ls0 ws0">tonces<span class="_ _21"> </span><span class="ff8">T<span class="_ _13"> </span></span>es<span class="_ _21"> </span>un<span class="_ _21"> </span>pun<span class="_ _12"></span>to<span class="_ _21"> </span>exterior<span class="_"> </span>y<span class="_ _1e"> </span>si<span class="_"> </span>el<span class="_ _1e"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _21"> </span>es<span class="_ _21"> </span>rect´<span class="_ _d"></span>angulo</div><div class="t m0 x7e h7 yee ff6 fs3 fc0 sc0 ls0 ws0">en<span class="_ _3"></span>tonces<span class="_ _f"> </span><span class="ff8">T<span class="_ _6"> </span></span>coincide<span class="_ _e"> </span>con<span class="_ _c"> </span>el<span class="_ _c"> </span>punto<span class="_ _e"> </span>medio<span class="_ _c"> </span>de<span class="_ _f"> </span>la<span class="_ _e"> </span>hip<span class="_ _24"></span>otenusa</div><div class="t m0 x7f h7 yef ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">T<span class="_ _6"> </span></span>coincide<span class="_ _e"> </span>con<span class="_ _c"> </span>el<span class="_ _c"> </span>centro<span class="_ _e"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>circunferencia<span class="_ _f"> </span>circunscrita<span class="_ _e"> </span>al<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo</div><div class="t m0 x7f h7 yf0 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">GH<span class="_ _c"> </span></span>=<span class="_"> </span>2<span class="ff8">GT<span class="_ _6"> </span></span>(recuerda<span class="_ _c"> </span>que<span class="_ _c"> </span><span class="ff8">G<span class="_ _c"> </span></span>es<span class="_ _f"> </span>el<span class="_ _e"> </span>baricentro<span class="_ _e"> </span>y<span class="_ _c"> </span><span class="ff8">H<span class="_ _8"> </span></span>el<span class="_ _c"> </span>orto<span class="_ _24"></span>centro)</div><div class="t m0 x7f h7 yf1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Los<span class="_ _e"> </span>puntos<span class="_ _e"> </span><span class="ff8">H<span class="_ _28"></span></span>,<span class="_ _c"> </span><span class="ff8">G</span>,<span class="_ _f"> </span><span class="ff8">T<span class="_ _6"> </span></span>son<span class="_ _e"> </span>alineados<span class="_ _c"> </span>(Recta<span class="_ _c"> </span>de<span class="_ _c"> </span>Euler)</div><div class="t m0 x7f h7 yf2 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>T<span class="_ _10"></span>o<span class="_ _24"></span>do<span class="_ _f"> </span>pun<span class="_ _3"></span>to<span class="_ _f"> </span>situado<span class="_ _c"> </span>en<span class="_ _f"> </span>la<span class="_ _f"> </span>mediatriz<span class="_ _c"> </span>de<span class="_ _f"> </span>cualquier<span class="_ _c"> </span>lado<span class="_ _f"> </span>equidista<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _f"> </span>extremos<span class="_ _c"> </span>del</div><div class="t m0 x5f h7 yf3 ff6 fs3 fc0 sc0 ls0 ws0">lado</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf8" class="pf w0 h0" data-page-no="8"><div class="pc pc8 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">5</div><div class="t m0 xa h7 y9 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _27"></span><span class="ff6">-<span class="_ _f"> </span>bisectrices</span></div><div class="t m0 x7b h9 yf4 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 yf5 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x7c h9 yf6 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x86 h9 yf7 ff8 fs3 fc0 sc0 ls0 ws0">I</div><div class="t m0 x87 h9 yf8 ff8 fs3 fc0 sc0 ls0 ws0">Z</div><div class="t m0 x88 h9 yf9 ff8 fs3 fc0 sc0 ls0 ws0">Y</div><div class="t m0 x4d h9 yfa ff8 fs3 fc0 sc0 ls0 ws0">X</div><div class="t m0 x7d h9 yfb ff8 fs3 fc0 sc0 ls0 ws0">k</div><div class="t m0 x7c h9 yfc ff8 fs3 fc0 sc0 ls0 ws0">k</div><div class="t m0 x89 h9 yfd ff8 fs3 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8a h9 yfe ff8 fs3 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8b h9 yff ff8 fs3 fc0 sc0 ls0 ws0">m</div><div class="t m0 x45 h9 y100 ff8 fs3 fc0 sc0 ls0 ws0">m</div><div class="t m0 x7e h7 y101 ff6 fs3 fc0 sc0 ls0 ws0">Son<span class="_ _c"> </span>rectas<span class="_ _c"> </span>que<span class="_ _c"> </span>dividen<span class="_ _f"> </span>a<span class="_ _c"> </span>cada<span class="_ _c"> </span>´<span class="_ _a"></span>angulo<span class="_ _e"> </span>del<span class="_ _f"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _c"> </span>en<span class="_ _c"> </span>dos</div><div class="t m0 x7e h7 y102 ff6 fs3 fc0 sc0 ls0 ws0">´<span class="_ _d"></span>angulos<span class="_ _13"> </span>de<span class="_ _13"> </span>igual<span class="_ _13"> </span>amplitud.<span class="_ _13"> </span>v<span class="_ _3"></span>emos<span class="_ _13"> </span>que<span class="_ _13"> </span><span class="ff8">I<span class="_ _6"> </span></span>siempre<span class="_ _13"> </span>v<span class="_ _3"></span>a<span class="_ _f"> </span>a<span class="_ _13"> </span>ser</div><div class="t m0 x7e h7 y103 ff6 fs3 fc0 sc0 ls0 ws0">un<span class="_ _c"> </span>pun<span class="_ _12"></span>to<span class="_ _c"> </span>in<span class="_ _12"></span>terior<span class="_ _c"> </span>del<span class="_ _c"> </span>tri´<span class="_ _d"></span>angulo</div><div class="t m0 x82 h7 y104 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span><span class="ff8">I<span class="_ _8"> </span></span>coincide<span class="_ _f"> </span>con<span class="_ _c"> </span>el<span class="_ _f"> </span>centro<span class="_ _c"> </span>de<span class="_ _f"> </span>la<span class="_ _c"> </span>circunferencia<span class="_ _f"> </span>inscrita</div><div class="t m0 x84 h7 y105 ff6 fs3 fc0 sc0 ls0 ws0">en<span class="_ _c"> </span>el<span class="_ _c"> </span>tri´<span class="_ _d"></span>angulo</div><div class="t m0 x82 h7 y106 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span><span class="ff8">C<span class="_ _9"></span>X</span></div><div class="t m0 x63 ha y107 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x8c h7 y106 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">AC<span class="_ _1e"> </span><span class="ffa">·<span class="_ _29"></span></span>C<span class="_ _28"></span>B<span class="_ _1e"> </span><span class="ffa">−<span class="_ _29"></span></span>AX<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1f"></span></span>X<span class="_ _28"></span>B<span class="_ _9"></span></span>,<span class="_"> </span>an´<span class="_ _a"></span>alogamen<span class="_ _3"></span>te<span class="_ _e"> </span>para<span class="_ _e"> </span><span class="ff8">AY</span></div><div class="t m0 x84 h7 y108 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">B<span class="_ _9"></span>Z</span></div><div class="t m0 x82 h7 y109 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span><span class="ff8">AI<span class="_ _6"> </span></span>:<span class="_ _13"> </span><span class="ff8">B<span class="_ _9"></span>I<span class="_ _16"> </span></span>=<span class="_ _13"> </span><span class="ff8">AX<span class="_ _16"> </span></span>:<span class="_ _13"> </span><span class="ff8">B<span class="_ _9"></span>X<span class="_ _28"></span></span>,<span class="_ _8"> </span><span class="ff8">B<span class="_ _9"></span>I<span class="_ _6"> </span></span>:<span class="_ _8"> </span><span class="ff8">C<span class="_ _28"></span>I<span class="_ _6"> </span></span>=<span class="_ _8"> </span><span class="ff8">B<span class="_ _9"></span>Y<span class="_"> </span></span>:<span class="_ _13"> </span><span class="ff8">C<span class="_ _28"></span>Y<span class="_ _1e"> </span></span>,<span class="_ _13"> </span><span class="ff8">C<span class="_ _28"></span>I<span class="_ _16"> </span></span>:</div><div class="t m0 x84 h7 y10a ff8 fs3 fc0 sc0 ls0 ws0">AI<span class="_ _f"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _9"></span>Z<span class="_ _f"> </span><span class="ff6">:<span class="_"> </span></span>AZ</div><div class="t m0 x82 h7 y10b ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>T<span class="_ _10"></span>o<span class="_ _24"></span>do<span class="_"> </span>pun<span class="_ _3"></span>to<span class="_"> </span>situado<span class="_"> </span>en<span class="_ _21"> </span>la<span class="_"> </span>bisetriz<span class="_ _21"> </span>de<span class="_"> </span>cualquier<span class="_ _21"> </span>´<span class="_ _d"></span>angulo</div><div class="t m0 x84 h7 y10c ff6 fs3 fc0 sc0 ls0 ws0">equidista<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="_ _c"> </span>que<span class="_ _c"> </span>determinan<span class="_ _c"> </span>al<span class="_ _c"> </span>´<span class="_ _a"></span>angulo</div><div class="t m0 xb h7 y10d ff6 fs3 fc0 sc0 ls0 ws0">2)<span class="_ _c"> </span>P<span class="_ _12"></span>articularidades<span class="_ _c"> </span>imp<span class="_ _24"></span>ortan<span class="_ _12"></span>tes</div><div class="t m0 xa h7 y10e ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _13"> </span>que<span class="_ _8"> </span>los<span class="_ _13"> </span>cuatro<span class="_ _8"> </span>putos<span class="_ _13"> </span>y<span class="_ _8"> </span>4<span class="_ _8"> </span>rectas<span class="_ _13"> </span>notables<span class="_ _8"> </span>no<span class="_ _13"> </span>tienen<span class="_ _8"> </span>p<span class="_ _24"></span>orqu´<span class="_ _d"></span>e<span class="_ _8"> </span>coincidir<span class="_ _8"> </span>p<span class="_ _24"></span>ero<span class="_ _13"> </span>en<span class="_ _8"> </span>un</div><div class="t m0 xb h7 y10f ff6 fs3 fc0 sc0 ls0 ws0">tri´<span class="_ _d"></span>angulo<span class="_ _f"> </span>is´<span class="_ _d"></span>osceles,<span class="_ _f"> </span>las<span class="_ _c"> </span>4<span class="_ _f"> </span>rectas<span class="_ _c"> </span>notables<span class="_ _f"> </span>referidas<span class="_ _c"> </span>a<span class="_ _f"> </span>las<span class="_ _c"> </span>base<span class="_ _f"> </span>coinciden<span class="_ _c"> </span>y<span class="_ _f"> </span>los<span class="_ _c"> </span>cuatro<span class="_ _f"> </span>pin<span class="_ _3"></span>tos</div><div class="t m0 xb h7 y110 ff6 fs3 fc0 sc0 ls0 ws0">notables<span class="_ _c"> </span>ser<span class="_ _10"></span>´<span class="_ _11"></span>ıan<span class="_ _c"> </span>pun<span class="_ _12"></span>tos<span class="_ _c"> </span>alineados<span class="_ _c"> </span>sobre<span class="_ _c"> </span>ellas.</div><div class="t m0 xa h7 y111 ff6 fs3 fc0 sc0 ls0 ws0">Ahora<span class="_ _13"> </span>el<span class="_ _13"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _13"> </span>equil´<span class="_ _a"></span>atero<span class="_ _f"> </span>“esconde”<span class="_ _13"> </span>otras<span class="_ _13"> </span>“cositas”<span class="_ _13"> </span>que<span class="_ _13"> </span>hacen<span class="_ _13"> </span>de<span class="_ _f"> </span>´<span class="_ _a"></span>el<span class="_ _13"> </span>un<span class="_ _13"> </span>p<span class="_ _24"></span>ol<span class="_ _10"></span>´<span class="_ _11"></span>ıgono</div><div class="t m0 xb h7 y112 ff6 fs3 fc0 sc0 ls0 ws0">m<span class="_ _3"></span>uy<span class="_ _f"> </span>in<span class="_ _3"></span>teresante,<span class="_ _e"> </span>veamos...</div><div class="t m0 x7f h7 y113 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>P<span class="_ _3"></span>ara<span class="_ _c"> </span>cada<span class="_ _c"> </span>lado<span class="_ _c"> </span>las<span class="_ _c"> </span>cuatro<span class="_ _f"> </span>rectas<span class="_ _e"> </span>notables<span class="_ _c"> </span>coinciden</div><div class="t m0 x7f h7 y114 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Los<span class="_ _e"> </span>cuatro<span class="_ _c"> </span>pntos<span class="_ _e"> </span>notables<span class="_ _c"> </span>coinciden<span class="_ _f"> </span>tam<span class="_ _3"></span>bi´<span class="_ _a"></span>en</div><div class="t m0 xa h7 y115 ff6 fs3 fc0 sc0 ls0 ws0">Esto<span class="_ _c"> </span>genera<span class="_ _c"> </span>resultados<span class="_ _c"> </span>a<span class="_ _c"> </span>destacar,<span class="_ _c"> </span>veamos...</div><div class="t m0 x34 h7 y116 ff6 fs3 fc0 sc0 ls0 ws0">Sean<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">→<span class="_ _20"> </span></span></span>longitud<span class="_ _e"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>lados</div><div class="t m0 x13 h7 y117 ff8 fs3 fc0 sc0 ls0 ws0">h<span class="_ _20"> </span><span class="ffa">→<span class="_ _20"> </span><span class="ff6">altura<span class="_ _e"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>lados</span></span></div><div class="t m0 x8d h7 y118 ff8 fs3 fc0 sc0 ls0 ws0">S<span class="_ _c"> </span><span class="ffa">→<span class="_ _20"> </span><span class="ff6">´<span class="_ _d"></span>area<span class="_ _c"> </span>del<span class="_ _f"> </span>tri´<span class="_ _d"></span>angulo</span></span></div><div class="t m0 x8e h7 y119 ff8 fs3 fc0 sc0 ls0 ws0">r<span class="_ _e"> </span><span class="ffa">→<span class="_ _20"> </span><span class="ff6">radio<span class="_ _e"> </span>de<span class="_ _f"> </span>la<span class="_ _e"> </span>circunferencia<span class="_ _c"> </span>inscrita</span></span></div><div class="t m0 x36 h7 y11a ff8 fs3 fc0 sc0 ls0 ws0">R<span class="_ _20"> </span><span class="ffa">→<span class="_ _20"> </span><span class="ff6">radio<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>circunferencia<span class="_ _c"> </span>circunscrita</span></span></div><div class="t m0 x8f h7 y11b ffa fs3 fc0 sc0 ls0 ws0">∗<span class="_ _20"> </span><span class="ff6">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _31"> </span><span class="ff8">h<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>R<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>r<span class="_ _32"> </span>R<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>2</span>r<span class="_ _32"> </span>h<span class="_ _20"> </span><span class="ff6">=</span></span></span></span></div><div class="t m0 x90 h7 y11c ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x24 h7 y11d ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 x25 h7 y11e ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x91 h7 y11b ff8 fs3 fc0 sc0 ls0 ws0">a<span class="_ _31"> </span>S<span class="_ _c"> </span><span class="ff6">=</span></div><div class="t m0 x92 h9 y11d ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x93 ha y11f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x94 h7 y11c ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 xc h7 y11d ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 x95 h7 y11e ff6 fs3 fc0 sc0 ls0 ws0">4</div><div class="t m0 xa h7 y120 ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _20"> </span>que<span class="_ _e"> </span>es<span class="_ _e"> </span>suficiente<span class="_"> </span>cono<span class="_ _24"></span>cer<span class="_ _e"> </span>cualesquiera<span class="_ _e"> </span>dos<span class="_ _20"> </span>de<span class="_ _e"> </span>estas<span class="_ _e"> </span>v<span class="_ _3"></span>ariables<span class="_ _e"> </span>para<span class="_ _20"> </span>p<span class="_ _24"></span>o<span class="_ _24"></span>der<span class="_ _e"> </span>cono<span class="_ _24"></span>cer<span class="_ _e"> </span>el</div><div class="t m0 xb h7 y121 ff6 fs3 fc0 sc0 ls0 ws0">v<span class="_ _3"></span>alor<span class="_ _e"> </span>de<span class="_ _f"> </span>las<span class="_ _e"> </span>otras<span class="_ _c"> </span>3.</div><div class="t m0 xb h7 y122 ff6 fs3 fc0 sc0 ls0 ws0">Otras<span class="_ _c"> </span>notas<span class="_ _c"> </span>de<span class="_ _c"> </span>inter<span class="_ _3"></span>´<span class="_ _a"></span>es</div><div class="t m0 x5e h7 y123 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Sean<span class="_ _13"> </span><span class="ff8">b</span></div><div class="t m0 x8f he y124 ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x4d h7 y123 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span><span class="ff8">b</span></div><div class="t m0 x43 he y125 ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 x88 h7 y123 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span><span class="ff8">b</span></div><div class="t m0 x96 he y124 ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 x46 h7 y123 ffa fs3 fc0 sc0 ls0 ws0">→<span class="_ _13"> </span><span class="ff6">longitud<span class="_ _13"> </span>de<span class="_ _8"> </span>las<span class="_ _13"> </span>bisectrices<span class="_ _8"> </span>de<span class="_ _13"> </span><span class="ff8">a</span>,<span class="_ _13"> </span><span class="ff8">b<span class="_ _8"> </span></span>y<span class="_ _13"> </span><span class="ff8">c<span class="_ _8"> </span></span>y<span class="_ _13"> </span><span class="ff8">p<span class="_ _13"> </span></span></span>→<span class="_ _8"> </span><span class="ff6">semip<span class="_ _24"></span>er<span class="_ _10"></span>´<span class="_ _11"></span>ımetro<span class="_ _13"> </span>del</span></div><div class="t m0 x5f h7 y126 ff6 fs3 fc0 sc0 ls0 ws0">tri´<span class="_ _d"></span>angulo</div><div class="t m0 x5f h7 y127 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">b</span></span></div><div class="t m0 x31 he y128 ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x97 h7 y127 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x2d h7 y129 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2c h7 y12a ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c</div><div class="t m0 x3a hb y12b ffb fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x67 h7 y127 ff8 fs3 fc0 sc0 ls0 ws0">bc<span class="ff6">(</span>p<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a<span class="ff6">)<span class="_ _c"> </span>y<span class="_ _c"> </span>as<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>con<span class="_ _c"> </span><span class="ff8">b</span></span></div><div class="t m0 x98 he y12c ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 x71 h7 y127 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">b</span></div><div class="t m0 x99 he y128 ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 x5e h7 y49 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Sean<span class="_ _e"> </span><span class="ff8">m</span></div><div class="t m0 x81 he y12d ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x9a h7 y49 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">m</span></div><div class="t m0 x12 he y12e ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 x96 h9 y49 ff8 fs3 fc0 sc0 ls0 ws0">m</div><div class="t m0 x2e he y12d ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 x2f h7 y49 ffa fs3 fc0 sc0 ls0 ws0">→<span class="_ _c"> </span><span class="ff6">longitud<span class="_ _c"> </span>de<span class="_ _c"> </span>las<span class="_ _c"> </span>medianas<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="_ _f"> </span><span class="ff8">a</span>,<span class="_ _e"> </span><span class="ff8">b<span class="_ _c"> </span></span>y<span class="_ _f"> </span><span class="ff8">c</span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf9" class="pf w0 h0" data-page-no="9"><div class="pc pc9 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">6</div><div class="t m0 x5f h7 y12f ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">m</span></span></div><div class="t m0 x2b he y130 ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x9b h7 y12f ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x9c h7 y131 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x9c h7 y132 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12 hb y133 ffb fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x5b h7 y134 ff6 fs3 fc0 sc0 ls0 ws0">2(<span class="ff8">b</span></div><div class="t m0 x2f ha y135 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9d h7 y134 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 x10 ha y135 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9e h7 y134 ff6 fs3 fc0 sc0 ls0 ws0">)<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span><span class="ff8">a</span></span></div><div class="t m0 x9f ha y135 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa0 h7 y134 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span>as<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>con<span class="_ _c"> </span><span class="ff8">m</span></div><div class="t m0 xa1 he y136 ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 xa2 h7 y12f ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">m</span></div><div class="t m0 x57 he y130 ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 x5e h7 y137 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Sean<span class="_ _e"> </span><span class="ff8">h</span></div><div class="t m0 xa3 he y138 ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 xa4 h7 y137 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">h</span></div><div class="t m0 xa5 he y139 ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 x2d h7 y137 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">h</span></div><div class="t m0 xa6 he y138 ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 xa7 h7 y137 ffa fs3 fc0 sc0 ls0 ws0">→<span class="_ _c"> </span><span class="ff6">longitud<span class="_ _c"> </span>de<span class="_ _c"> </span>las<span class="_ _c"> </span>alturas<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="ff8">a</span>,<span class="_ _f"> </span><span class="ff8">b<span class="_ _e"> </span></span>y<span class="_ _c"> </span><span class="ff8">c</span></span></div><div class="t m0 x5f h7 y13a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">h</span></span></div><div class="t m0 x42 he y13b ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x81 h7 y13a ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x43 h7 y13c ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa8 h9 y13d ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x2d hb y13e ffb fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x96 h7 y13a ff8 fs3 fc0 sc0 ls0 ws0">ρ<span class="ff6">(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>b<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>c<span class="ff6">)<span class="_ _c"> </span>y<span class="_ _c"> </span>as<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>con<span class="_ _c"> </span><span class="ff8">h</span></span></div><div class="t m0 x57 he y13f ffd fs4 fc0 sc0 ls0 ws0">b</div><div class="t m0 xa9 h7 y13a ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">h</span></div><div class="t m0 xaa he y13b ffd fs4 fc0 sc0 ls0 ws0">c</div><div class="t m0 x5e h7 y140 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Sean<span class="_ _e"> </span><span class="ff8">K<span class="_ _13"> </span></span>circuncentro,<span class="_ _e"> </span><span class="ff8">I<span class="_ _8"> </span></span>incen<span class="_ _12"></span>tro,<span class="_ _c"> </span><span class="ff8">R<span class="_ _c"> </span></span>circunradio<span class="_ _c"> </span>y<span class="_ _c"> </span><span class="ff8">r<span class="_ _f"> </span></span>inradio</div><div class="t m0 x5f h7 y141 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff6">(<span class="ff8">K<span class="_ _28"></span>I<span class="_ _28"></span></span>)</span></span></div><div class="t m0 x2 ha y142 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x88 h7 y141 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">R</span></div><div class="t m0 xab ha y142 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xac h7 y141 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff6">2<span class="ff8">Rr<span class="_ _f"> </span></span>(f´<span class="_ _d"></span>ormula<span class="_ _e"> </span>de<span class="_ _c"> </span>Euler)</span></div><div class="t m0 x5e h7 y143 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Simedianas<span class="_ _8"> </span>de<span class="_ _6"> </span>un<span class="_ _8"> </span>tri´<span class="_ _d"></span>angulo:<span class="_ _6"> </span>En<span class="_ _8"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _28"></span></span></span>:<span class="_ _8"> </span><span class="ff8">AM<span class="_ _30"> </span></span>mediana,<span class="_ _6"> </span><span class="ff8">AD<span class="_ _6"> </span></span>bisectriz<span class="_ _8"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _6"> </span><span class="ff8">AX<span class="_ _16"> </span><span class="ff6">es</span></span></span></div><div class="t m0 x5f h7 y144 ff6 fs3 fc0 sc0 ls0 ws0">simediana<span class="_ _c"> </span>de<span class="_ _c"> </span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _13"> </span></span>si<span class="_ _c"> </span><span class="ff8">AD<span class="_ _f"> </span></span>biseca<span class="_ _c"> </span>al<span class="_ _c"> </span><span class="ffc">]<span class="ff8">X<span class="_ _28"></span>AM<span class="_ _6"> </span></span></span>y<span class="_ _e"> </span>se<span class="_ _c"> </span>cumple:</div><div class="t m0 x76 h9 y145 ff8 fs3 fc0 sc0 ls0 ws0">X<span class="_ _28"></span>B</div><div class="t m0 x76 h9 y146 ff8 fs3 fc0 sc0 ls0 ws0">X<span class="_ _28"></span>C</div><div class="t m0 x31 h7 y147 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x4d h9 y145 ff8 fs3 fc0 sc0 ls0 ws0">AB</div><div class="t m0 x32 ha y148 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa4 h9 y149 ff8 fs3 fc0 sc0 ls0 ws0">AC</div><div class="t m0 x32 ha y14a ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x79 h7 y147 ff6 fs3 fc0 sc0 ls0 ws0">El<span class="_ _21"> </span>pun<span class="_ _3"></span>to<span class="_"> </span>donde<span class="_ _1e"> </span>las<span class="_"> </span>tres<span class="_ _1e"> </span>simedianas<span class="_ _21"> </span>se<span class="_ _21"> </span>cortan<span class="_ _1e"> </span>s<span class="_ _24"></span>e<span class="_ _1e"> </span>llama<span class="_"> </span>Pun<span class="_ _3"></span>to<span class="_ _21"> </span>de<span class="_ _21"> </span>Lemoine</div><div class="t m0 x5e h7 y14b ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _c"> </span>-<span class="_ _16"> </span>Los<span class="_ _c"> </span>segmentos<span class="_ _e"> </span>trazados<span class="_ _f"> </span>desde<span class="_ _c"> </span>cada<span class="_ _f"> </span>v<span class="_ _3"></span>´<span class="_ _25"></span>ertice<span class="_ _c"> </span>de<span class="_ _f"> </span>un<span class="_ _c"> </span>tri´<span class="_ _a"></span>angulo<span class="_ _c"> </span>dado<span class="_ _c"> </span>con<span class="_ _f"> </span>el<span class="_ _c"> </span>v´<span class="_ _a"></span>ertice<span class="_ _c"> </span>m´<span class="_ _a"></span>as</div><div class="t m0 x5f h7 y14c ff6 fs3 fc0 sc0 ls0 ws0">alejado<span class="_"> </span>del<span class="_"> </span>tri´<span class="_ _d"></span>angulo<span class="_"> </span>equil´<span class="_ _d"></span>atero<span class="_"> </span>trazado<span class="_"> </span>exteriormen<span class="_ _3"></span>te<span class="_"> </span>a<span class="_"> </span>dic<span class="_ _12"></span>ho<span class="_"> </span>tri´<span class="_ _d"></span>angulo<span class="_"> </span>sobre<span class="_"> </span>el<span class="_"> </span>lado</div><div class="t m0 x5f h7 y14d ff6 fs3 fc0 sc0 ls0 ws0">opuesto<span class="_ _f"> </span>al<span class="_ _13"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _13"> </span>dado<span class="_ _f"> </span>son<span class="_ _13"> </span>iguales.<span class="_ _f"> </span>Estos<span class="_ _f"> </span>tres<span class="_ _13"> </span>segmen<span class="_ _3"></span>tos<span class="_ _13"> </span>se<span class="_ _f"> </span>cortan<span class="_ _13"> </span>en<span class="_ _f"> </span>un<span class="_ _13"> </span>pun<span class="_ _3"></span>to</div><div class="t m0 x5f h7 y14e ff6 fs3 fc0 sc0 ls0 ws0">llamado:<span class="_ _c"> </span>Pun<span class="_ _12"></span>to<span class="_ _c"> </span>de<span class="_ _c"> </span>F<span class="_ _b"></span>ermat</div><div class="t m0 xb h7 y14f ff6 fs3 fc0 sc0 ls0 ws0">4,<span class="_ _c"> </span>5,<span class="_ _c"> </span>6,<span class="_ _c"> </span>...<span class="_ _c"> </span>pueden<span class="_ _c"> </span>ser<span class="_ _c"> </span>sugerencias<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>amigos<span class="_ _c"> </span>de<span class="_ _f"> </span>la<span class="_ _e"> </span>matem´<span class="_ _a"></span>atica<span class="_ _e"> </span>a<span class="_ _f"> </span>estos<span class="_ _e"> </span>temas</div><div class="t m0 x69 h7 y150 ff5 fs3 fc0 sc0 ls0 ws0">Las<span class="_ _f"> </span>notas<span class="_ _13"> </span>marcadas<span class="_ _f"> </span>con<span class="_ _13"> </span>*<span class="_ _f"> </span>deb<span class="_ _24"></span>en<span class="_ _13"> </span>ser<span class="_ _f"> </span>demostradas</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pfa" class="pf w0 h0" data-page-no="a"><div class="pc pca w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">7</div><div class="t m0 xb h5 yc1 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#3<span class="_ _6"> </span>-<span class="_ _16"> </span>Circunferencia<span class="_ _6"> </span>y<span class="_ _16"> </span>Cuadril´<span class="_ _7"></span>atero</div><div class="t m0 xa h7 yc2 ff6 fs3 fc0 sc0 ls0 ws0">An<span class="_ _3"></span>tes<span class="_ _e"> </span>de<span class="_ _e"> </span>proseguir<span class="_"> </span>quiero<span class="_ _e"> </span>se<span class="_ _24"></span>˜<span class="_ _d"></span>nalar<span class="_"> </span>que<span class="_ _e"> </span>esto<span class="_"> </span>no<span class="_ _e"> </span>es<span class="_ _e"> </span>un<span class="_"> </span>comp<span class="_ _24"></span>endio<span class="_ _e"> </span>sobre<span class="_ _e"> </span>temas<span class="_"> </span>de<span class="_ _e"> </span>nuestra</div><div class="t m0 xb h7 yc3 ff6 fs3 fc0 sc0 ls0 ws0">ense<span class="_ _24"></span>˜<span class="_ _d"></span>nanza,<span class="_ _e"> </span>mi<span class="_ _e"> </span>may<span class="_ _3"></span>or<span class="_ _e"> </span>anhelo<span class="_ _c"> </span>es<span class="_ _e"> </span>colab<span class="_ _24"></span>orar<span class="_ _c"> </span>con<span class="_ _e"> </span>la<span class="_ _c"> </span>cultura<span class="_ _e"> </span>matem´<span class="_ _a"></span>atica<span class="_ _e"> </span>sobre<span class="_ _e"> </span>to<span class="_ _24"></span>do<span class="_ _c"> </span>con<span class="_ _c"> </span>notas</div><div class="t m0 xb h7 yc4 ff6 fs3 fc0 sc0 ls0 ws0">p<span class="_ _24"></span>o<span class="_ _24"></span>co<span class="_ _c"> </span>publicadas<span class="_ _c"> </span>y<span class="_ _c"> </span>que<span class="_ _c"> </span>sean<span class="_ _c"> </span>muy<span class="_ _e"> </span>interesan<span class="_ _3"></span>tes...</div><div class="t m0 xb h7 y151 ff6 fs3 fc0 sc0 ls0 ws0">1)<span class="_ _1e"> </span>Y<span class="_ _b"></span>a<span class="_ _1e"> </span>vimos<span class="_ _1e"> </span>que<span class="_ _1e"> </span>en<span class="_ _1e"> </span>to<span class="_ _24"></span>do<span class="_ _1e"> </span>tri´<span class="_ _d"></span>angulo<span class="_ _1e"> </span>puede<span class="_ _1e"> </span>inscribirse<span class="_ _1e"> </span>y<span class="_ _21"> </span>circunscribirse<span class="_ _1e"> </span>una<span class="_ _1e"> </span>circunferencia.<span class="_ _1e"> </span>Sin</div><div class="t m0 xb h7 y152 ff6 fs3 fc0 sc0 ls0 ws0">em<span class="_ _3"></span>bargo<span class="_ _c"> </span>este<span class="_ _c"> </span>privilegio<span class="_ _c"> </span>no<span class="_ _c"> </span>lo<span class="_ _c"> </span>p<span class="_ _24"></span>oseen<span class="_ _c"> </span>los<span class="_ _e"> </span>cuadril´<span class="_ _a"></span>ateros.<span class="_ _e"> </span>Para<span class="_ _e"> </span>que<span class="_ _c"> </span>una<span class="_ _c"> </span>circunferencia<span class="_ _c"> </span>pueda</div><div class="t m0 xb h7 yc7 ff6 fs3 fc0 sc0 ls0 ws0">circunscribirse<span class="_ _8"> </span>en<span class="_ _13"> </span>un<span class="_ _8"> </span>cuadril´<span class="_ _a"></span>atero<span class="_ _13"> </span><span class="ff8">AB<span class="_ _9"></span>C<span class="_ _28"></span>D<span class="_ _6"> </span></span>tiene<span class="_ _13"> </span>que<span class="_ _8"> </span>cumplirse<span class="_ _8"> </span>que<span class="_ _8"> </span>los<span class="_ _13"> </span>´<span class="_ _a"></span>angulos<span class="_ _13"> </span>opuestos</div><div class="t m0 xb h7 y153 ff6 fs3 fc0 sc0 ls0 ws0">sean<span class="_ _f"> </span>suplementarios<span class="_ _f"> </span>(<span class="ffc">]<span class="ff8">A<span class="_ _1e"> </span></span></span>+<span class="_"> </span><span class="ffc">]<span class="ff8">C<span class="_ _13"> </span></span></span>=<span class="_ _f"> </span>180</div><div class="t m0 xad h8 y154 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x9 h7 y153 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _f"> </span><span class="ffc">]<span class="ff8">B<span class="_ _e"> </span></span></span>+<span class="_ _21"> </span><span class="ffc">]<span class="ff8">D<span class="_ _f"> </span></span></span>=<span class="_ _f"> </span>180</div><div class="t m0 xaa h8 y154 ff7 fs4 fc0 sc0 ls0 ws0">◦</div><div class="t m0 x6e h7 y153 ff6 fs3 fc0 sc0 ls0 ws0">),<span class="_ _f"> </span>este<span class="_ _f"> </span>cuadril´<span class="_ _a"></span>atero<span class="_ _f"> </span>es<span class="_ _f"> </span>llamado</div><div class="t m0 xb h7 y155 ff6 fs3 fc0 sc0 ls0 ws0">Cuadril´<span class="_ _d"></span>atero<span class="_ _c"> </span>C<span class="_ _10"></span>´<span class="_ _11"></span>ıclico<span class="_ _c"> </span>(<span class="ff8">C<span class="_ _28"></span>C<span class="_ _28"></span></span>).</div><div class="t m0 x69 h7 y156 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_"> </span>para<span class="_"> </span>que<span class="_"> </span>pueda<span class="_ _21"> </span>ser<span class="_"> </span>inscrito<span class="_"> </span>tiene<span class="_"> </span>que<span class="_ _21"> </span>cumplir<span class="_"> </span>que<span class="_"> </span><span class="ff8">AB<span class="_ _29"> </span></span>+<span class="_ _27"></span><span class="ff8">C<span class="_ _9"></span>D<span class="_ _e"> </span></span>=<span class="_"> </span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _1f"> </span></span>+<span class="_ _27"></span><span class="ff8">D<span class="_ _24"></span>A</span></div><div class="t m0 xb h7 y157 ff6 fs3 fc0 sc0 ls0 ws0">(T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Pitot).</div><div class="t m0 xa h7 y158 ff6 fs3 fc0 sc0 ls0 ws0">Cono<span class="_ _24"></span>cer<span class="_ _c"> </span>esto<span class="_ _c"> </span>es<span class="_ _c"> </span>muy<span class="_ _e"> </span>ven<span class="_ _3"></span>ta<span class="_ _9"></span>joso,<span class="_ _c"> </span>pues<span class="_ _c"> </span>veamos...</div><div class="t m0 x30 h9 y159 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 y15a ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xae h9 y15b ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x7b h9 y15c ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 xae h9 y15d ff8 fs3 fc0 sc0 ls0 ws0">E</div><div class="t m0 xaf h9 y15e ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xb0 h9 y15f ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x3 h9 y160 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xb1 h7 y161 ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 x47 h7 y162 ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xb2 h7 y163 ff6 fs3 fc0 sc0 ls0 ws0">Sea<span class="_"> </span><span class="ff8">AB<span class="_ _24"></span>C<span class="_ _28"></span>D<span class="_ _20"> </span></span>un<span class="_"> </span><span class="ff8">C<span class="_ _9"></span>C<span class="_ _f"> </span></span>tal<span class="_ _21"> </span>que<span class="_"> </span>sus<span class="_ _21"> </span>diagonales<span class="_"> </span>se<span class="_"> </span>cortan<span class="_ _1e"> </span>en<span class="_"> </span><span class="ff8">P<span class="_ _13"> </span></span>=<span class="_ _4"></span><span class="ffa">⇒</span></div><div class="t m0 xb3 h7 y164 ff6 fs3 fc0 sc0 ls0 ws0">i<span class="_ _c"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _16"> </span><span class="ffc">]<span class="ff8">AB<span class="_ _24"></span>D<span class="_ _e"> </span></span></span>=<span class="_"> </span><span class="ffc">]<span class="ff8">AC<span class="_ _28"></span>D<span class="_ _24"></span></span></span>,<span class="_ _c"> </span><span class="ffc">]<span class="ff8">D<span class="_ _24"></span>B<span class="_ _9"></span>C<span class="_ _f"> </span></span></span>=<span class="_"> </span><span class="ffc">]<span class="ff8">D<span class="_ _24"></span>AC<span class="_ _9"></span></span></span>,<span class="_ _c"> </span>etc</div><div class="t m0 xb4 h7 y165 ff6 fs3 fc0 sc0 ls0 ws0">ii<span class="_ _c"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _16"> </span><span class="ffc">]<span class="ff8">DAB<span class="_ _c"> </span></span></span>=<span class="_"> </span><span class="ffc">]<span class="ff8">D<span class="_ _24"></span>C<span class="_ _28"></span>E<span class="_ _13"> </span></span></span>(siendo<span class="_ _c"> </span><span class="ff8">B<span class="_ _9"></span></span>,<span class="_ _c"> </span><span class="ff8">C<span class="_ _13"> </span></span>y<span class="_ _c"> </span><span class="ff8">E<span class="_ _13"> </span></span>alineados)</div><div class="t m0 xb5 h7 y166 ff6 fs3 fc0 sc0 ls0 ws0">iii<span class="_ _c"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _16"> </span><span class="ff8">AP<span class="_ _c"> </span><span class="ffa">·<span class="_ _1e"> </span></span>P<span class="_ _1f"> </span>C<span class="_ _c"> </span></span>=<span class="_"> </span><span class="ff8">D<span class="_ _24"></span>P<span class="_ _f"> </span><span class="ffa">·<span class="_ _1e"> </span></span>P<span class="_ _29"> </span>B<span class="_ _13"> </span></span>(p<span class="_ _24"></span>otencia<span class="_ _c"> </span>de<span class="_ _c"> </span>un<span class="_ _c"> </span>punto<span class="_ _e"> </span>PP)</div><div class="t m0 xb5 h7 y167 ff6 fs3 fc0 sc0 ls0 ws0">iv<span class="_ _c"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _16"> </span><span class="ff8">AB<span class="_ _27"> </span><span class="ffa">·<span class="_ _28"></span></span>C<span class="_ _28"></span>D<span class="_ _27"></span></span>+<span class="_ _28"></span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _1f"> </span><span class="ffa">·<span class="_ _9"></span></span>D<span class="_ _9"></span>A<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">AC<span class="_ _29"> </span><span class="ffa">·<span class="_ _28"></span></span>B<span class="_ _9"></span>D<span class="_ _e"> </span></span>(T<span class="_ _b"></span>eorema<span class="_"> </span>de<span class="_ _21"> </span>Ptolomeo)</div><div class="t m0 xb4 h7 y168 ff6 fs3 fc0 sc0 ls0 ws0">v<span class="_ _c"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _16"> </span><span class="ff8">A</span></div><div class="t m0 x53 he y169 ffd fs4 fc0 sc0 ls0 ws0">AB<span class="_ _24"></span>C<span class="_ _9"></span>D</div><div class="t m0 xb6 h7 y168 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xb7 hb y16a ffb fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 xb8 h7 y168 ff8 fs3 fc0 sc0 ls0 ws0">ρ<span class="ff6">(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>b<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>c<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>d<span class="ff6">)</span></div><div class="t m0 x83 h7 y16b ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">ρ<span class="_ _c"> </span></span>semip<span class="_ _24"></span>er<span class="_ _10"></span>´<span class="_ _11"></span>ımetro)</div><div class="t m0 xb h7 y16c ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_"> </span>m<span class="_ _3"></span>uc<span class="_ _12"></span>has<span class="_"> </span>otras<span class="_ _1e"> </span>relaciones,<span class="_"> </span>y<span class="_"> </span>como<span class="_ _1e"> </span>sab<span class="_ _24"></span>emos,<span class="_"> </span>la<span class="_"> </span>Geometr<span class="_ _4"></span>´<span class="_ _11"></span>ıa<span class="_"> </span>es<span class="_"> </span>el<span class="_ _21"> </span>arte<span class="_"> </span>de<span class="_ _1e"> </span>relacionar<span class="_"> </span>elemen<span class="_ _3"></span>tos</div><div class="t m0 xb h7 y16d ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>las<span class="_ _c"> </span>figuras<span class="_ _c"> </span>presentadas.</div><div class="t m0 xb h7 y16e ff6 fs3 fc0 sc0 ls0 ws0">2)<span class="_ _f"> </span>Potencia<span class="_ _f"> </span>de<span class="_ _f"> </span>un<span class="_ _f"> </span>punto:<span class="_ _f"> </span>Puede<span class="_ _f"> </span>presentarse<span class="_ _f"> </span>de<span class="_ _f"> </span>v<span class="_ _3"></span>arias<span class="_ _f"> </span>formas,<span class="_ _f"> </span>ver<span class="_ _f"> </span>que<span class="_ _f"> </span>en<span class="_ _13"> </span>1.iii<span class="_ _f"> </span><span class="ffa">4<span class="ff8">AP<span class="_ _29"> </span>B<span class="_ _13"> </span></span>∼</span></div><div class="t m0 xb h7 y16f ffa fs3 fc0 sc0 ls0 ws0">4<span class="ff8">C<span class="_ _9"></span>P<span class="_ _1f"> </span>D<span class="ff6">,<span class="_ _f"> </span>esta<span class="_ _e"> </span>ser<span class="_ _10"></span>´<span class="_ _11"></span>ıa<span class="_ _c"> </span>la<span class="_ _c"> </span>primera<span class="_ _c"> </span>forma.</span></span></div><div class="t m0 xa h7 y170 ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>2)</div><div class="t m0 x7b h9 y171 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xae h9 y172 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xb9 h9 y173 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x67 h9 y174 ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x15 h7 y175 ff6 fs3 fc0 sc0 ls0 ws0">Si<span class="_ _c"> </span><span class="ff8">C<span class="_ _28"></span>D<span class="_ _f"> </span></span>tangen<span class="_ _3"></span>te<span class="_ _c"> </span>en<span class="_ _c"> </span><span class="ff8">D</span></div><div class="t m0 x15 h7 y176 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">D<span class="_ _24"></span>C</span></span></div><div class="t m0 xba ha y177 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xbb h7 y176 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">AC<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"> </span></span>B<span class="_ _9"></span>C</span></div><div class="t m0 x15 h7 y178 ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _c"> </span>que<span class="_ _c"> </span><span class="ffa">4<span class="ff8">AC<span class="_ _28"></span>D<span class="_ _e"> </span></span>∼<span class="_ _20"> </span>4<span class="ff8">D<span class="_ _24"></span>B<span class="_ _24"></span>C</span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pfb" class="pf w0 h0" data-page-no="b"><div class="pc pcb w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">8</div><div class="t m0 xa h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>3)</div><div class="t m0 x7b h9 y179 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x21 h9 y17a ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xbc h9 y17b ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 xbd h9 y17c ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x4 h9 y17d ff8 fs3 fc0 sc0 ls0 ws0">E</div><div class="t m0 x15 h7 y17e ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _9"></span>E<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"> </span></span>D<span class="_ _24"></span>C<span class="_ _f"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _28"></span>A<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>B<span class="_ _24"></span>C</div><div class="t m0 x15 h7 y17f ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _c"> </span>que<span class="_ _c"> </span><span class="ffa">4<span class="ff8">AC<span class="_ _28"></span>D<span class="_ _e"> </span></span>∼<span class="_ _20"> </span>4<span class="ff8">B<span class="_ _24"></span>C<span class="_ _28"></span>E</span></span></div><div class="t m0 xb h7 y180 ff6 fs3 fc0 sc0 ls0 ws0">3)<span class="_ _c"> </span>Eje<span class="_ _c"> </span>radical<span class="_ _c"> </span>de<span class="_ _c"> </span>dos<span class="_ _c"> </span>circunferencias<span class="_ _c"> </span>(<span class="ff8">E<span class="_ _28"></span>R</span>)</div><div class="t m0 xa h7 y181 ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>eamos<span class="_ _c"> </span>las<span class="_ _c"> </span>formas<span class="_ _c"> </span>de<span class="_ _c"> </span>presentarse</div><div class="t m0 xb h7 y182 ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>1</div><div class="t m0 x5a h7 y183 ff6 fs3 fc0 sc0 ls0 ws0">Circunferencias<span class="_ _c"> </span>T<span class="_ _b"></span>angen<span class="_ _12"></span>tes</div><div class="t m0 xa8 h7 y184 ff6 fs3 fc0 sc0 ls0 ws0">Externas</div><div class="t m0 x87 h9 y185 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 x5f ha y186 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x67 h9 y185 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 x9d ha y186 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb0 h9 y187 ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xbe h7 y188 ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>2</div><div class="t m0 x17 h7 y189 ff6 fs3 fc0 sc0 ls0 ws0">Circunferencias</div><div class="t m0 xbf h7 y18a ff6 fs3 fc0 sc0 ls0 ws0">Exteriores</div><div class="t m0 xc0 h9 y18b ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xc1 ha y18c ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xc2 h9 y18b ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xc3 ha y18c ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xc4 h9 y18d ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xb h7 y18e ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>3</div><div class="t m0 x5a h7 y18f ff6 fs3 fc0 sc0 ls0 ws0">Circunferencias<span class="_ _c"> </span>T<span class="_ _b"></span>angen<span class="_ _12"></span>tes</div><div class="t m0 xc5 h7 y190 ff6 fs3 fc0 sc0 ls0 ws0">In<span class="_ _3"></span>teriores</div><div class="t m0 x40 h9 y191 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xc6 ha y192 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa4 h9 y191 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xc5 ha y192 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7b h9 y193 ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xbe h7 y194 ff6 fs3 fc0 sc0 ls0 ws0">forma<span class="_ _c"> </span>4</div><div class="t m0 x17 h7 y195 ff6 fs3 fc0 sc0 ls0 ws0">Circunferencias</div><div class="t m0 xc7 h7 y196 ff6 fs3 fc0 sc0 ls0 ws0">Secan<span class="_ _3"></span>tes</div><div class="t m0 xc8 h9 y197 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xaa ha y198 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x27 h9 y197 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xc9 ha y198 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xca h9 y199 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xca h9 y19a ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x1e h9 y19b ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xca h9 y19c ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xcb h9 y19d ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x27 h9 y19e ff8 fs3 fc0 sc0 ls0 ws0">T</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pfc" class="pf w0 h0" data-page-no="c"><div class="pc pcc w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">9</div><div class="t m0 xa h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">En<span class="_ _13"> </span>cada<span class="_ _8"> </span>forma<span class="_ _8"> </span>vemos<span class="_ _13"> </span>que<span class="_ _8"> </span><span class="ff8">E<span class="_ _9"></span>R<span class="_ _8"> </span><span class="ffa">⊥<span class="_ _8"> </span></span>O</span></div><div class="t m0 xcc ha y19f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x7 h9 y9 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 x98 ha y19f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xcd h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _13"> </span>p<span class="_ _24"></span>ero<span class="_ _8"> </span>lo<span class="_ _8"> </span>m´<span class="_ _a"></span>as<span class="_ _13"> </span>destacado<span class="_ _8"> </span>es<span class="_ _8"> </span>que:<span class="_ _13"> </span>T<span class="_ _b"></span>o<span class="_ _24"></span>do<span class="_ _8"> </span>punto</div><div class="t m0 xb h7 y81 ff6 fs3 fc0 sc0 ls0 ws0">situado<span class="_ _8"> </span>en<span class="_ _8"> </span>el<span class="_ _8"> </span><span class="ff8">E<span class="_ _28"></span>R<span class="_ _8"> </span></span>tiene<span class="_ _8"> </span>la<span class="_ _6"> </span>misma<span class="_ _13"> </span>p<span class="_ _24"></span>otencia<span class="_ _8"> </span>resp<span class="_ _24"></span>ecto<span class="_ _6"> </span>a<span class="_ _13"> </span>ambas<span class="_ _13"> </span>circunferencias.<span class="_ _6"> </span>V<span class="_ _10"></span>ea<span class="_ _8"> </span>como</div><div class="t m0 xb h7 y1a0 ff6 fs3 fc0 sc0 ls0 ws0">ejemplo<span class="_ _c"> </span>en<span class="_ _c"> </span>la<span class="_ _c"> </span>forma<span class="_ _c"> </span>4<span class="_ _c"> </span><span class="ff8">P<span class="_ _1f"> </span>Q</span></div><div class="t m0 x13 ha y1a1 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x68 h7 y1a0 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">P<span class="_ _29"> </span>B<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"> </span></span>P<span class="_ _29"> </span>A<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">P<span class="_ _29"> </span>T</span></div><div class="t m0 x55 ha y1a1 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x72 h7 y1a0 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span>siendo<span class="_ _c"> </span><span class="ff8">P<span class="_ _29"> </span>Q<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">P<span class="_ _1f"> </span>T<span class="_ _6"> </span></span>tangen<span class="_ _3"></span>tes.</div><div class="t m0 xb h7 y1a2 ff6 fs3 fc0 sc0 ls0 ws0">4)<span class="_ _c"> </span>Cen<span class="_ _12"></span>tro<span class="_ _c"> </span>radical<span class="_ _c"> </span>de<span class="_ _c"> </span>3<span class="_ _c"> </span>circunferencias<span class="_ _c"> </span>(<span class="ff8">C<span class="_ _28"></span>R</span>).</div><div class="t m0 x5f h9 y1a3 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xce ha y1a4 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x5 h9 y1a5 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xcf ha y1a6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3c h9 y1a7 ff8 fs3 fc0 sc0 ls0 ws0">O</div><div class="t m0 xd0 ha y1a8 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x6b h9 y1a9 ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _9"></span>R</div><div class="t m0 xd1 h9 y1aa ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 x4e h9 y1ab ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xd2 h9 y1ac ff8 fs3 fc0 sc0 ls0 ws0">E<span class="_ _9"></span>R</div><div class="t m0 xd3 h7 y1ad ff6 fs3 fc0 sc0 ls0 ws0">Es<span class="_ _c"> </span>el<span class="_ _c"> </span>punto</div><div class="t m0 xd4 h7 y1ae ff6 fs3 fc0 sc0 ls0 ws0">donde<span class="_ _c"> </span>concurren</div><div class="t m0 xd3 h7 y1af ff6 fs3 fc0 sc0 ls0 ws0">los<span class="_ _c"> </span>tres<span class="_ _c"> </span><span class="ff8">E<span class="_ _9"></span>R</span></div><div class="t m0 xb h7 y1b0 ff6 fs3 fc0 sc0 ls0 ws0">5)<span class="_ _c"> </span>T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Ptolomeo</div><div class="t m0 xa h7 y1b1 ff6 fs3 fc0 sc0 ls0 ws0">Como<span class="_ _c"> </span>vimos<span class="_ _f"> </span>en<span class="_ _c"> </span>1.iv,<span class="_ _c"> </span>en<span class="_ _f"> </span>todo<span class="_ _f"> </span><span class="ff8">C<span class="_ _9"></span>C<span class="_ _8"> </span></span>el<span class="_ _c"> </span>pro<span class="_ _24"></span>ducto<span class="_ _f"> </span>de<span class="_ _c"> </span>las<span class="_ _c"> </span>diagonales<span class="_ _f"> </span>es<span class="_ _c"> </span>igual<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _c"> </span>suma<span class="_ _c"> </span>del</div><div class="t m0 xb h7 y1b2 ff6 fs3 fc0 sc0 ls0 ws0">pro<span class="_ _24"></span>ducto<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="_ _c"> </span>opuestos.</div><div class="t m0 x7d h9 y1b3 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xd5 h9 y1b4 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x68 h9 y1b5 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x7b h9 y1b6 ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 xa8 h9 y1b7 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x96 h9 y1b8 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x2a h9 y1b9 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x6b h9 y1ba ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x9b h7 y1bb ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xd6 h7 y1bc ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xb2 h7 y1bd ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>B<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"></span></span>C<span class="_ _9"></span>A<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>AB<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"> </span></span>C<span class="_ _9"></span>D<span class="_ _20"> </span><span class="ff6">+<span class="_ _1e"> </span></span>B<span class="_ _24"></span>C<span class="_ _e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>D<span class="_ _24"></span>A<span class="ff6">,<span class="_ _c"> </span>demostraci´<span class="_ _d"></span>on</span></div><div class="t m0 xb2 h7 y1be ff6 fs3 fc0 sc0 ls0 ws0">Sean<span class="_ _c"> </span><span class="ff8">Q<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span></span>D<span class="_ _24"></span>P<span class="_ _29"> </span></span>;<span class="_ _c"> </span><span class="ffc">]<span class="ff8">D<span class="_ _24"></span>C<span class="_ _28"></span>Q<span class="_ _20"> </span></span></span>=<span class="_"> </span><span class="ffc">]<span class="ff8">P<span class="_ _29"> </span>C<span class="_ _28"></span>B<span class="_ _9"></span></span></span>,<span class="_ _c"> </span>tenemos:</div><div class="t m0 x53 h7 y1bf ffa fs3 fc0 sc0 ls0 ws0">4<span class="ff8">D<span class="_ _24"></span>C<span class="_ _9"></span>Q<span class="_ _20"> </span></span>∼<span class="_ _20"> </span>4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _f"> </span></span>⇒</div><div class="t m0 x60 h9 y1c0 ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>Q</div><div class="t m0 xd7 h9 y1c1 ff8 fs3 fc0 sc0 ls0 ws0">AB</div><div class="t m0 xd3 h7 y1bf ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xd8 h9 y1c0 ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _9"></span>Q</div><div class="t m0 xd8 h9 y1c1 ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>C</div><div class="t m0 xd9 h7 y1bf ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x28 h9 y1c0 ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>C</div><div class="t m0 xc9 h9 y1c1 ff8 fs3 fc0 sc0 ls0 ws0">AC</div><div class="t m0 xda h7 y1c2 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x70 hf y1c3 ffe fs3 fc0 sc0 ls0 ws0">○</div><div class="t m0 x53 h7 y1c4 ffa fs3 fc0 sc0 ls0 ws0">4<span class="ff8">D<span class="_ _24"></span>AC<span class="_ _c"> </span></span>∼<span class="_ _20"> </span>4<span class="ff8">B<span class="_ _9"></span>C<span class="_ _28"></span>Q<span class="_ _20"> </span></span>⇒</div><div class="t m0 x60 h9 y1c5 ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>A</div><div class="t m0 x60 h9 y1c6 ff8 fs3 fc0 sc0 ls0 ws0">QB</div><div class="t m0 xdb h7 y1c4 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xd8 h9 y1c5 ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>C</div><div class="t m0 xd8 h9 y1c6 ff8 fs3 fc0 sc0 ls0 ws0">QC</div><div class="t m0 xd9 h7 y1c4 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x28 h9 y1c5 ff8 fs3 fc0 sc0 ls0 ws0">AC</div><div class="t m0 x28 h9 y1c6 ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>C</div><div class="t m0 xda h7 y1c7 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x70 hf y1c8 ffe fs3 fc0 sc0 ls0 ws0">○</div><div class="t m0 xb9 h7 y1c9 ff6 fs3 fc0 sc0 ls0 ws0">de</div><div class="t m0 xdc h7 y1ca ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4a hf y1cb ffe fs3 fc0 sc0 ls0 ws0">○</div><div class="t m0 xdd h7 y1c9 ff8 fs3 fc0 sc0 ls0 ws0">AB<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"></span></span>C<span class="_ _9"></span>D<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>D<span class="_ _24"></span>Q<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>AC</div><div class="t m0 xb9 h7 y1cc ff6 fs3 fc0 sc0 ls0 ws0">de</div><div class="t m0 xdc h7 y1cd ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4a hf y1ce ffe fs3 fc0 sc0 ls0 ws0">○</div><div class="t m0 xdd h7 y1cc ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>C<span class="_ _e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>D<span class="_ _24"></span>A<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>QB<span class="_ _20"> </span><span class="ffa">·<span class="_ _1e"> </span></span>AC</div><div class="t m0 xde hb y1cf ffb fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 xd8 h7 y1d0 ff6 fs3 fc0 sc0 ls0 ws0">sumando<span class="_ _c"> </span>obtenemos</div><div class="t m0 xdf h7 y1d1 ff6 fs3 fc0 sc0 ls0 ws0">lo<span class="_ _c"> </span>deseado</div><div class="t m0 xb h7 y1d2 ff6 fs3 fc0 sc0 ls0 ws0">nota:<span class="_ _13"> </span>Una<span class="_ _f"> </span>pincelada<span class="_ _13"> </span>muy<span class="_ _f"> </span>b<span class="_ _24"></span>onita<span class="_ _13"> </span>relacionada<span class="_ _f"> </span>con<span class="_ _13"> </span>esto<span class="_ _13"> </span>se<span class="_ _13"> </span>presen<span class="_ _3"></span>ta<span class="_ _13"> </span>de<span class="_ _13"> </span>la<span class="_ _f"> </span>siguiente<span class="_ _f"> </span>forma:</div><div class="t m0 xb h7 y1d3 ff6 fs3 fc0 sc0 ls0 ws0">Si<span class="_ _c"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _8"> </span></span></span>equil´<span class="_ _d"></span>atero<span class="_ _f"> </span>est´<span class="_ _d"></span>a<span class="_ _f"> </span>inscrito<span class="_ _c"> </span>en<span class="_ _c"> </span>una<span class="_ _f"> </span>circunferencia<span class="_ _c"> </span>y<span class="_ _f"> </span><span class="ff8">D<span class="_ _e"> </span><span class="ffa">∈</span></span></div><div class="t m0 xdb he y1d4 ffd fs4 fc0 sc0 ls0 ws0">_</div><div class="t m0 xe0 h7 y1d3 ff8 fs3 fc0 sc0 ls0 ws0">AC<span class="_ _f"> </span><span class="ff6">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _e"> </span><span class="ff8">AD<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>D<span class="_ _24"></span>C<span class="_ _f"> </span><span class="ff6">=<span class="_ _e"> </span></span>B<span class="_ _9"></span>D</span></span></span></div><div class="t m0 xb h7 y1d5 ff6 fs3 fc0 sc0 ls0 ws0">(T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Pompello)</div><div class="t m0 xa h7 y1d6 ff6 fs3 fc0 sc0 ls0 ws0">6,<span class="_ _c"> </span>7,<span class="_ _c"> </span>8<span class="_ _c"> </span>...<span class="_ _c"> </span>pueden<span class="_ _c"> </span>ser<span class="_ _c"> </span>sugerencias<span class="_ _c"> </span>de<span class="_ _f"> </span>n<span class="_ _3"></span>uestros<span class="_ _c"> </span>amigos.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pfd" class="pf w0 h0" data-page-no="d"><div class="pc pcd w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">10</div><div class="t m0 xb h5 yc1 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#4<span class="_ _6"> </span>-<span class="_ _16"> </span>Otros<span class="_ _6"> </span>T<span class="_ _10"></span>eoremas</div><div class="t m0 xa h7 yc2 ff6 fs3 fc0 sc0 ls0 ws0">Estas<span class="_"> </span>notas<span class="_ _21"> </span>v<span class="_ _3"></span>an<span class="_"> </span>dirigidas<span class="_ _1e"> </span>may<span class="_ _3"></span>ormente<span class="_ _21"> </span>a<span class="_"> </span>estudian<span class="_ _3"></span>tes<span class="_"> </span>de<span class="_"> </span>Alto<span class="_ _1e"> </span>Rendimiento<span class="_ _21"> </span>que<span class="_"> </span>se<span class="_ _21"> </span>prepa-</div><div class="t m0 xb h7 yc3 ff6 fs3 fc0 sc0 ls0 ws0">ran<span class="_ _1e"> </span>con<span class="_"> </span>esmero<span class="_ _1e"> </span>para<span class="_ _1e"> </span>enfrentar<span class="_ _1e"> </span>las<span class="_ _21"> </span>diferen<span class="_ _3"></span>tes<span class="_"> </span>competencias<span class="_ _21"> </span>con<span class="_ _12"></span>v<span class="_ _3"></span>o<span class="_ _24"></span>cadas<span class="_"> </span>por<span class="_ _21"> </span>las<span class="_ _1e"> </span>matem´<span class="_ _a"></span>aticas.</div><div class="t m0 xa h7 y1d7 ff6 fs3 fc0 sc0 ls0 ws0">1<span class="_ _29"> </span><span class="ffa">·<span class="_ _1f"></span></span>-<span class="_ _13"> </span>En<span class="_ _8"> </span>to<span class="_ _24"></span>do<span class="_ _8"> </span><span class="ffa">4<span class="_ _13"> </span></span>se<span class="_ _8"> </span>cumple<span class="_ _13"> </span>que:<span class="_ _8"> </span><span class="ff8">a<span class="_ _20"> </span></span>+<span class="_"> </span><span class="ff8">b<span class="_ _8"> </span>><span class="_ _13"> </span>c</span>,<span class="_ _8"> </span><span class="ff8">b<span class="_ _20"> </span></span>+<span class="_"> </span><span class="ff8">c<span class="_ _8"> </span>><span class="_ _13"> </span>a</span>,<span class="_ _8"> </span><span class="ff8">c<span class="_ _20"> </span></span>+<span class="_"> </span><span class="ff8">a<span class="_ _13"> </span>><span class="_ _8"> </span>b<span class="_ _8"> </span><span class="ffa">−<span class="_ _2a"></span>→<span class="_ _8"> </span><span class="ff6">T<span class="_ _b"></span>eorema<span class="_ _13"> </span>de<span class="_ _8"> </span>la</span></span></span></div><div class="t m0 xb h7 y151 ff6 fs3 fc0 sc0 ls0 ws0">desigualdad<span class="_ _c"> </span>triangular.</div><div class="t m0 xa h7 y1d8 ff6 fs3 fc0 sc0 ls0 ws0">2<span class="_ _27"></span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _13"> </span>En<span class="_ _f"> </span>to<span class="_ _24"></span>do<span class="_ _f"> </span><span class="ffa">4<span class="_ _13"> </span></span>se<span class="_ _f"> </span>cumple<span class="_ _13"> </span>que:<span class="_ _f"> </span>el<span class="_ _13"> </span>segmen<span class="_ _3"></span>to<span class="_ _13"> </span>que<span class="_ _f"> </span>une<span class="_ _13"> </span>los<span class="_ _f"> </span>pun<span class="_ _12"></span>tos<span class="_ _f"> </span>medios<span class="_ _13"> </span>de<span class="_ _f"> </span>dos<span class="_ _13"> </span>de<span class="_ _f"> </span>sus</div><div class="t m0 xb h7 y1d9 ff6 fs3 fc0 sc0 ls0 ws0">lados<span class="_ _c"> </span>es<span class="_ _c"> </span>paralelo<span class="_ _c"> </span>al<span class="_ _c"> </span>tercero<span class="_ _c"> </span>y<span class="_ _c"> </span>mide<span class="_ _c"> </span>su<span class="_ _f"> </span>mitad<span class="_ _e"> </span><span class="ffa">−<span class="_ _4"></span>→<span class="_ _c"> </span><span class="ff6">T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>paralela<span class="_ _c"> </span>media<span class="_ _c"> </span>de<span class="_ _c"> </span>un<span class="_ _f"> </span><span class="ffa">4</span>.</span></span></div><div class="t m0 xa h7 y1da ff6 fs3 fc0 sc0 ls0 ws0">3<span class="_ _9"></span><span class="ffa">·<span class="_ _9"></span></span>-<span class="_ _c"> </span>Si<span class="_ _e"> </span>dos<span class="_ _c"> </span>bisectrices<span class="_ _e"> </span>de<span class="_ _c"> </span>un<span class="_ _e"> </span><span class="ffa">4<span class="_ _e"> </span></span>tienen<span class="_ _c"> </span>igual<span class="_ _e"> </span>longitud<span class="_ _c"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _e"> </span><span class="ff6">el<span class="_ _c"> </span></span>4<span class="_ _e"> </span><span class="ff6">es<span class="_ _c"> </span>is´<span class="_ _d"></span>osceles<span class="_ _c"> </span><span class="ffa">−<span class="_ _2a"></span>→<span class="_ _c"> </span><span class="ff6">T<span class="_ _b"></span>eorema</span></span></span></span></div><div class="t m0 xb h7 y1db ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>Steiner</div><div class="t m0 xa h7 y1dc ff6 fs3 fc0 sc0 ls0 ws0">4<span class="_ _27"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _f"> </span>La<span class="_ _f"> </span>suma<span class="_ _f"> </span>de<span class="_ _f"> </span>las<span class="_ _c"> </span>distancias<span class="_ _f"> </span>desde<span class="_ _f"> </span>un<span class="_ _f"> </span>punto<span class="_ _c"> </span>interior<span class="_ _c"> </span>de<span class="_ _f"> </span>un<span class="_ _f"> </span><span class="ffa">4<span class="_ _f"> </span></span>equil´<span class="_ _d"></span>atero<span class="_ _f"> </span>a<span class="_ _f"> </span>los<span class="_ _f"> </span>lados</div><div class="t m0 xb h7 y1dd ff6 fs3 fc0 sc0 ls0 ws0">del<span class="_ _c"> </span><span class="ffa">4<span class="_ _c"> </span></span>es<span class="_ _c"> </span>=<span class="_ _c"> </span>a<span class="_ _c"> </span>la<span class="_ _c"> </span>longitud<span class="_ _c"> </span>de<span class="_ _f"> </span>su<span class="_ _e"> </span>altura<span class="_ _c"> </span><span class="ffa">−<span class="_ _4"></span>→<span class="_ _c"> </span><span class="ff6">T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Viviani</span></span></div><div class="t m0 xa h7 y1de ff6 fs3 fc0 sc0 ls0 ws0">5<span class="_ _3"></span><span class="ffa">·<span class="_ _b"></span><span class="ff6">-<span class="_"> </span>Si<span class="_ _21"> </span>sobre<span class="_"> </span>los<span class="_ _1e"> </span>lados<span class="_"> </span><span class="ff8">AB<span class="_ _e"> </span></span>y<span class="_"> </span><span class="ff8">AC<span class="_ _e"> </span></span>de<span class="_"> </span>un<span class="_ _1e"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _c"> </span></span></span>se<span class="_"> </span>construy<span class="_ _3"></span>en,<span class="_"> </span>p<span class="_ _24"></span>or<span class="_"> </span>fuera,<span class="_ _1e"> </span>los<span class="_"> </span><span class="ffa">4<span class="_ _21"> </span></span>equil´<span class="_ _a"></span>ateros</span></span></div><div class="t m0 xb h9 y1df ff8 fs3 fc0 sc0 ls0 ws0">AB<span class="_ _24"></span>C</div><div class="t m0 x89 h8 y1e0 ff7 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x21 h7 y1df ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">C<span class="_ _28"></span>AB</span></div><div class="t m0 xe2 h8 y1e0 ff7 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x2 h7 y1df ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">B<span class="_ _9"></span>B</span></span></div><div class="t m0 x3 h8 y1e1 ff7 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x9d h7 y1df ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">C<span class="_ _9"></span>C</span></div><div class="t m0 xb2 h8 y1e1 ff7 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 xa h7 y1e2 ff6 fs3 fc0 sc0 ls0 ws0">6<span class="_ _27"></span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _13"> </span>Si<span class="_ _f"> </span><span class="ff8">G<span class="_ _f"> </span></span>es<span class="_ _13"> </span>el<span class="_ _f"> </span>baricentro<span class="_ _f"> </span>de<span class="_ _f"> </span>un<span class="_ _13"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _24"></span>C<span class="_ _6"> </span></span></span>y<span class="_ _f"> </span>p<span class="_ _24"></span>or<span class="_ _13"> </span><span class="ff8">G<span class="_ _f"> </span></span>se<span class="_ _f"> </span>traza<span class="_ _13"> </span>una<span class="_ _f"> </span>recta<span class="_ _13"> </span>que<span class="_ _f"> </span>corte<span class="_ _f"> </span>a<span class="_ _13"> </span>los<span class="_ _f"> </span>3</div><div class="t m0 xb h7 y1e3 ff6 fs3 fc0 sc0 ls0 ws0">lados<span class="_ _13"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _f"> </span><span class="ff8">AX<span class="_ _c"> </span><span class="ff6">+<span class="_"> </span></span>B<span class="_ _24"></span>Z<span class="_ _6"> </span><span class="ff6">=<span class="_ _f"> </span></span>C<span class="_ _9"></span>Y<span class="_ _1e"> </span><span class="ff6">,<span class="_ _13"> </span>siendo<span class="_ _13"> </span></span>AX<span class="_ _28"></span><span class="ff6">,<span class="_ _13"> </span></span>B<span class="_ _24"></span>Z<span class="_ _6"> </span><span class="ff6">y<span class="_ _13"> </span></span>C<span class="_ _9"></span>Y<span class="_"> </span><span class="ff6">perp<span class="_ _24"></span>endiculares<span class="_ _13"> </span>desde<span class="_ _13"> </span></span>A<span class="ff6">,<span class="_ _f"> </span></span>B<span class="_ _9"></span><span class="ff6">,<span class="_ _13"> </span></span>C<span class="_ _6"> </span><span class="ff6">a<span class="_ _f"> </span>la</span></span></span></div><div class="t m0 xb h7 y1e4 ff6 fs3 fc0 sc0 ls0 ws0">recta.</div><div class="t m0 xa h7 y1e5 ff6 fs3 fc0 sc0 ls0 ws0">7<span class="ffa">·<span class="_ _3"></span><span class="ff6">-<span class="_"> </span>Las<span class="_ _20"> </span>proy<span class="_ _3"></span>ecciones<span class="_"> </span>de<span class="_"> </span>un<span class="_"> </span>punto<span class="_"> </span>de<span class="_"> </span>una<span class="_"> </span>circunferencia<span class="_"> </span>sobre<span class="_"> </span>los<span class="_"> </span>lados<span class="_"> </span>de<span class="_"> </span>un<span class="_"> </span><span class="ffa">4<span class="_ _20"> </span></span>inscrito</span></span></div><div class="t m0 xb h7 y1e6 ff6 fs3 fc0 sc0 ls0 ws0">en<span class="_ _c"> </span>dic<span class="_ _12"></span>ha<span class="_ _c"> </span>circunferencia<span class="_ _c"> </span>determinan<span class="_ _c"> </span>una<span class="_ _c"> </span>recta<span class="_ _c"> </span><span class="ffa">−<span class="_ _2a"></span>→<span class="_ _f"> </span><span class="ff6">Recta<span class="_ _e"> </span>de<span class="_ _c"> </span>Simpson.</span></span></div><div class="t m0 xa h7 y1e7 ff6 fs3 fc0 sc0 ls0 ws0">8<span class="_ _27"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _f"> </span>Circunferencia<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _f"> </span>9<span class="_ _c"> </span>puntos<span class="_ _c"> </span><span class="ffa">−<span class="_ _2a"></span>→<span class="_ _f"> </span><span class="ff6">Es<span class="_ _f"> </span>la<span class="_ _c"> </span>que<span class="_ _f"> </span>pasa<span class="_ _f"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>los<span class="_ _c"> </span>puntos<span class="_ _c"> </span>medios<span class="_ _f"> </span>de<span class="_ _f"> </span>cada</span></span></div><div class="t m0 xb h7 y1e8 ff6 fs3 fc0 sc0 ls0 ws0">lado,<span class="_ _c"> </span>los<span class="_ _c"> </span>pies<span class="_ _c"> </span>de<span class="_ _c"> </span>las<span class="_ _f"> </span>alturas<span class="_ _e"> </span>y<span class="_ _f"> </span>los<span class="_ _e"> </span>puntos<span class="_ _c"> </span>medios<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>segmentos<span class="_ _e"> </span>que<span class="_ _f"> </span>unen<span class="_ _e"> </span>los<span class="_ _f"> </span>v<span class="_ _3"></span>´<span class="_ _a"></span>ertices<span class="_ _f"> </span>al</div><div class="t m0 xb h7 y1e9 ff6 fs3 fc0 sc0 ls0 ws0">orto<span class="_ _24"></span>cen<span class="_ _3"></span>tro<span class="_ _e"> </span>de<span class="_ _e"> </span>un<span class="_"> </span><span class="ffa">4</span>.<span class="_ _e"> </span>El<span class="_ _e"> </span>cen<span class="_ _12"></span>tro<span class="_"> </span>de<span class="_ _e"> </span>esta<span class="_ _e"> </span>circunferencia<span class="_"> </span>es<span class="_ _e"> </span>el<span class="_ _e"> </span>pun<span class="_ _12"></span>to<span class="_"> </span>medio<span class="_ _e"> </span>desde<span class="_ _e"> </span>el<span class="_"> </span>orto<span class="_ _24"></span>centro</div><div class="t m0 xb h7 y1ea ff6 fs3 fc0 sc0 ls0 ws0">al<span class="_ _c"> </span>cen<span class="_ _12"></span>tro<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>circunferencia<span class="_ _c"> </span>circunscrita.</div><div class="t m0 xa h7 y1eb ff6 fs3 fc0 sc0 ls0 ws0">9<span class="_ _27"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _f"> </span>T<span class="_ _10"></span>ri´<span class="_ _a"></span>angulo<span class="_ _c"> </span>p<span class="_ _24"></span>edal<span class="_ _f"> </span><span class="ffa">−<span class="_ _2a"></span>→<span class="_ _f"> </span><span class="ff6">Es<span class="_ _f"> </span>el<span class="_ _f"> </span></span>4<span class="_ _c"> </span><span class="ff6">determinado<span class="_ _f"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>los<span class="_ _f"> </span>pies<span class="_ _c"> </span>de<span class="_ _f"> </span>las<span class="_ _f"> </span>alturas<span class="_ _c"> </span>de<span class="_ _f"> </span>un<span class="_ _f"> </span></span>4<span class="ff6">.<span class="_ _f"> </span>El</span></span></div><div class="t m0 xb h7 y1ec ff6 fs3 fc0 sc0 ls0 ws0">orto<span class="_ _24"></span>cen<span class="_ _3"></span>tro<span class="_ _f"> </span>del<span class="_ _e"> </span><span class="ffa">4<span class="_ _c"> </span></span>coincide<span class="_ _c"> </span>con<span class="_ _f"> </span>el<span class="_ _e"> </span>incentro<span class="_ _e"> </span>del<span class="_ _c"> </span><span class="ffa">4<span class="_ _f"> </span></span>pedal.</div><div class="t m0 xa h7 y1ed ff6 fs3 fc0 sc0 ls0 ws0">10<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Stewart:<span class="_ _e"> </span>Sea<span class="_ _c"> </span><span class="ff8">AD<span class="_ _f"> </span></span>una<span class="_ _c"> </span>ceviana<span class="_ _c"> </span>cualquiera...</div><div class="t m0 x7b h9 y1ee ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xe3 h9 y1ef ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x22 h9 y1f0 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xd1 h9 y1f1 ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x7 h9 y1f2 ff8 fs3 fc0 sc0 ls0 ws0">AB</div><div class="t m0 x54 ha y1f3 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xe4 h7 y1f2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _28"></span><span class="ff8">D<span class="_ _24"></span>C<span class="_ _33"> </span><span class="ff6">+<span class="_ _28"></span></span>AC</span></div><div class="t m0 x23 ha y1f3 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xe5 h7 y1f2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _28"></span><span class="ff8">B<span class="_ _9"></span>D<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>AD</span></div><div class="t m0 x91 ha y1f3 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xe6 h7 y1f2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _28"></span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _1f"> </span><span class="ff6">+<span class="_ _27"></span></span>B<span class="_ _9"></span>D<span class="_ _29"> </span></span>·<span class="_ _27"></span><span class="ff8">D<span class="_ _24"></span>C<span class="_ _1f"> </span></span>·<span class="_ _28"></span><span class="ff8">B<span class="_ _9"></span>C</span></div><div class="t m0 x7 h7 y1f4 ff6 fs3 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>ara<span class="_ _13"> </span>su<span class="_ _13"> </span>demostraci´<span class="_ _d"></span>on,<span class="_ _13"> </span>trace<span class="_ _13"> </span>la<span class="_ _13"> </span>altura<span class="_ _13"> </span>desde<span class="_ _f"> </span><span class="ff8">A<span class="_ _13"> </span></span>y</div><div class="t m0 x7 h7 y1f5 ff6 fs3 fc0 sc0 ls0 ws0">aplique<span class="_ _c"> </span>reiteradas<span class="_ _c"> </span>veces<span class="_ _e"> </span>el<span class="_ _c"> </span>teorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Pit´<span class="_ _a"></span>agoras</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pfe" class="pf w0 h0" data-page-no="e"><div class="pc pce w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">11</div><div class="t m0 xa h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">11<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _c"> </span>bisectriz<span class="_ _c"> </span>interior<span class="_ _e"> </span>y<span class="_ _c"> </span>exterior<span class="_ _f"> </span>de<span class="_ _e"> </span>un<span class="_ _c"> </span><span class="ffa">4</span></div><div class="t m0 x7b h9 y1f6 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 y1f7 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x2d h9 y1f8 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xa4 h9 y1f9 ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x69 h7 y1fa ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 x80 h7 y1fb ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xe7 h9 y1fc ff8 fs3 fc0 sc0 ls0 ws0">AB</div><div class="t m0 xe7 h9 y1fd ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>C</div><div class="t m0 x9f h7 y1fe ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 x4a h9 y1fc ff8 fs3 fc0 sc0 ls0 ws0">AD</div><div class="t m0 x4a h9 y1fd ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _24"></span>C</div><div class="t m0 x3e h9 y1ff ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xe8 h9 y200 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 xe9 h9 y201 ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _34"> </span>D</div><div class="t m0 x1a h7 y202 ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xea h7 y203 ffa fs3 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xa h7 y204 ff6 fs3 fc0 sc0 ls0 ws0">12<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Cev<span class="_ _3"></span>a<span class="_ _c"> </span>y<span class="_ _c"> </span>Menelao</div><div class="t m0 x7b h9 y205 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x36 h9 y206 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x2d h9 y207 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 xeb h9 y208 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x2e h9 y209 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xb0 h9 y20a ff8 fs3 fc0 sc0 ls0 ws0">R</div><div class="t m0 xb3 h9 y20b ff8 fs3 fc0 sc0 ls0 ws0">AR</div><div class="t m0 xb3 h9 y20c ff8 fs3 fc0 sc0 ls0 ws0">RB</div><div class="t m0 x39 h7 y20d ffa fs3 fc0 sc0 ls0 ws0">·</div><div class="t m0 xec h9 y20b ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>P</div><div class="t m0 xec h9 y20c ff8 fs3 fc0 sc0 ls0 ws0">P<span class="_ _29"> </span>C</div><div class="t m0 xdd h7 y20d ffa fs3 fc0 sc0 ls0 ws0">·</div><div class="t m0 xed h9 y20b ff8 fs3 fc0 sc0 ls0 ws0">C<span class="_ _9"></span>Q</div><div class="t m0 xed h9 y20c ff8 fs3 fc0 sc0 ls0 ws0">QA</div><div class="t m0 xe4 h7 y20d ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>1</div><div class="t m0 x5d h9 y20e ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xee h9 y20f ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x24 h9 y210 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 xef h9 y211 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 xc3 h9 y212 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x93 h9 y213 ff8 fs3 fc0 sc0 ls0 ws0">R</div><div class="t m0 xa h7 y214 ff6 fs3 fc0 sc0 ls0 ws0">13<span class="_ _29"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _13"> </span>T<span class="_ _10"></span>eorema<span class="_ _13"> </span>de<span class="_ _13"> </span>P<span class="_ _3"></span>ascal:<span class="_ _13"> </span>En<span class="_ _13"> </span>to<span class="_ _24"></span>do<span class="_ _13"> </span>hex´<span class="_ _d"></span>agono<span class="_ _13"> </span>inscriptible<span class="_ _13"> </span>sin<span class="_ _f"> </span>lados<span class="_ _13"> </span>opuestos<span class="_ _13"> </span>paralelos,</div><div class="t m0 xb h7 y215 ff6 fs3 fc0 sc0 ls0 ws0">las<span class="_ _c"> </span>in<span class="_ _12"></span>tersecciones<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="_ _c"> </span>opuestos<span class="_ _c"> </span>determinan<span class="_ _c"> </span>3<span class="_ _c"> </span>puntos<span class="_ _e"> </span>alineados</div><div class="t m0 xa h7 y216 ff6 fs3 fc0 sc0 ls0 ws0">14<span class="ffa">·<span class="_ _12"></span><span class="ff6">-<span class="_"> </span>Desigualdad<span class="_"> </span>de<span class="_"> </span>Euler:<span class="_"> </span><span class="ff8">R<span class="_ _20"> </span><span class="ffa">≥<span class="_ _20"> </span></span></span>2<span class="ff8">r<span class="_ _e"> </span></span>con<span class="_"> </span>igualdad<span class="_ _20"> </span>si<span class="_ _20"> </span>el<span class="_ _20"> </span><span class="ffa">4<span class="_ _20"> </span></span>es<span class="_"> </span>equil´<span class="_ _a"></span>atero.<span class="_"> </span><span class="ff8">R<span class="_ _20"> </span><span class="ffa">→<span class="_ _20"> </span></span></span>circunradio,</span></span></div><div class="t m0 xb h7 y217 ff8 fs3 fc0 sc0 ls0 ws0">r<span class="_ _e"> </span><span class="ffa">→<span class="_ _c"> </span><span class="ff6">inradio</span></span></div><div class="t m0 xa h7 y218 ff6 fs3 fc0 sc0 ls0 ws0">15<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>C´<span class="_ _d"></span>alculo<span class="_ _f"> </span>de<span class="_ _e"> </span>´<span class="_ _a"></span>areas:</div><div class="t m0 x7f h7 y219 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">4<span class="_ _e"> </span></span>:<span class="_ _c"> </span><span class="ff8">A<span class="_ _20"> </span></span>=</div><div class="t m0 x4e h7 y21a ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>h</div><div class="t m0 xa5 h7 y21b ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa6 h7 y219 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xac h7 y21a ff8 fs3 fc0 sc0 ls0 ws0">a<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>b<span class="_ _1f"> </span><span class="ff6">sen<span class="_ _1f"> </span></span>γ</div><div class="t m0 xd5 h7 y21b ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf0 h7 y219 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">ρr<span class="_ _e"> </span></span>=</div><div class="t m0 xdd h9 y21a ff8 fs3 fc0 sc0 ls0 ws0">abc</div><div class="t m0 xdd h7 y21b ff6 fs3 fc0 sc0 ls0 ws0">4<span class="ff8">R</span></div><div class="t m0 x71 h7 y219 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xf1 hb y21c ffb fs3 fc0 sc0 ls0 ws0">p</div><div class="t m0 x5c h7 y219 ff8 fs3 fc0 sc0 ls0 ws0">ρ<span class="ff6">(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>b<span class="ff6">)(</span>ρ<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>c<span class="ff6">)<span class="_ _c"> </span>(Her´<span class="_ _d"></span>on)</span></div><div class="t m0 x5f h7 y21d ff8 fs3 fc0 sc0 ls0 ws0">a<span class="ff6">,<span class="_ _c"> </span></span>b<span class="ff6">,<span class="_ _c"> </span></span>c<span class="_ _c"> </span><span class="ff6">lados<span class="_ _c"> </span>del<span class="_ _c"> </span><span class="ffa">4</span>,<span class="_ _c"> </span></span>h<span class="_ _20"> </span><span class="ffa">→<span class="_ _c"> </span><span class="ff6">altura<span class="_ _c"> </span>del<span class="_ _f"> </span>lado<span class="_ _e"> </span></span></span>b</div><div class="t m0 x5f h7 y21e ff8 fs3 fc0 sc0 ls0 ws0">γ<span class="_ _c"> </span><span class="ffa">→<span class="_ _c"> </span><span class="ff6">´<span class="_ _d"></span>angulo<span class="_ _f"> </span>opuesto<span class="_ _e"> </span>al<span class="_ _c"> </span>lado<span class="_ _f"> </span><span class="ff8">c</span></span></span></div><div class="t m0 x5f h7 y21f ff8 fs3 fc0 sc0 ls0 ws0">ρ<span class="_ _20"> </span><span class="ffa">→<span class="_ _c"> </span><span class="ff6">semip<span class="_ _24"></span>er<span class="_ _10"></span>´<span class="_ _11"></span>ımetro<span class="_ _c"> </span>del<span class="_ _c"> </span><span class="ffa">4</span></span></span></div><div class="t m0 x7f h7 y220 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Cuadril´<span class="_ _d"></span>atero:<span class="_ _c"> </span><span class="ff8">A<span class="_ _20"> </span></span>=</div><div class="t m0 xf2 h9 y221 ff8 fs3 fc0 sc0 ls0 ws0">d</div><div class="t m0 x8d ha y222 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xae h7 y221 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff8">d</span></div><div class="t m0 xf3 ha y222 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf4 h7 y223 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb4 h7 y220 ff6 fs3 fc0 sc0 ls0 ws0">sen<span class="_ _1f"> </span><span class="ff8">σ</span></div><div class="t m0 x5f h9 y224 ff8 fs3 fc0 sc0 ls0 ws0">d</div><div class="t m0 x5a ha y225 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xeb h7 y224 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">d</span></div><div class="t m0 x7d ha y225 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2b h7 y224 ffa fs3 fc0 sc0 ls0 ws0">→<span class="_ _c"> </span><span class="ff6">diagonales,<span class="_ _35"> </span><span class="ff8">σ<span class="_ _e"> </span></span></span>→<span class="_ _20"> </span><span class="ffc">]<span class="_ _c"> </span><span class="ff6">formado<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>las<span class="_ _c"> </span>diagonales</span></span></div><div class="t m0 xa h7 y226 ff6 fs3 fc0 sc0 ls0 ws0">16<span class="_ _27"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _f"> </span>En<span class="_ _f"> </span>to<span class="_ _24"></span>do<span class="_ _f"> </span>paralelogramo<span class="_ _f"> </span>la<span class="_ _f"> </span>suma<span class="_ _f"> </span>de<span class="_ _f"> </span>los<span class="_ _c"> </span>cuadrados<span class="_ _f"> </span>de<span class="_ _f"> </span>sus<span class="_ _f"> </span>lados<span class="_ _f"> </span>multiplicados<span class="_ _c"> </span>p<span class="_ _24"></span>or</div><div class="t m0 xb h7 y227 ff6 fs3 fc0 sc0 ls0 ws0">dos<span class="_ _c"> </span>es<span class="_ _c"> </span>=<span class="_ _c"> </span>a<span class="_ _c"> </span>la<span class="_ _c"> </span>suma<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _f"> </span>cuadrados<span class="_ _e"> </span>de<span class="_ _c"> </span>sus<span class="_ _f"> </span>diagonales.</div><div class="t m0 xa h7 y228 ff6 fs3 fc0 sc0 ls0 ws0">17<span class="ffa">·</span>-<span class="_"> </span>T<span class="_ _10"></span>eorema<span class="_ _e"> </span>de<span class="_"> </span>V<span class="_ _b"></span>arignon:<span class="_"> </span>Al<span class="_"> </span>unir<span class="_ _20"> </span>los<span class="_ _e"> </span>4<span class="_"> </span>puntos<span class="_"> </span>medios<span class="_"> </span>de<span class="_"> </span>cada<span class="_"> </span>lado<span class="_"> </span>de<span class="_"> </span>un<span class="_ _20"> </span>cuadril´<span class="_ _a"></span>atero</div><div class="t m0 xb h7 y229 ff6 fs3 fc0 sc0 ls0 ws0">se<span class="_ _c"> </span>obtiene<span class="_ _c"> </span>un<span class="_ _c"> </span>paralelogramo.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pff" class="pf w0 h0" data-page-no="f"><div class="pc pcf w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">12</div><div class="t m0 x38 h10 y9 fff fs3 fc0 sc0 ls0 ws0">Algunos<span class="_ _16"> </span>lemas<span class="_ _2f"> </span>necesarios</div><div class="t m0 xa h7 ya ff6 fs3 fc0 sc0 ls0 ws0">18<span class="_ _29"> </span><span class="ffa">·<span class="_ _1f"></span></span>-<span class="_ _13"> </span>La<span class="_ _8"> </span>distancia<span class="_ _8"> </span>del<span class="_ _13"> </span>circuncentro<span class="_ _13"> </span>a<span class="_ _8"> </span>uno<span class="_ _13"> </span>de<span class="_ _8"> </span>los<span class="_ _13"> </span>lados<span class="_ _8"> </span>de<span class="_ _8"> </span>un<span class="_ _13"> </span><span class="ffa">4<span class="_ _8"> </span></span>tiene<span class="_ _8"> </span>la<span class="_ _13"> </span>mitad<span class="_ _8"> </span>de<span class="_ _8"> </span>la</div><div class="t m0 xb h7 yb ff6 fs3 fc0 sc0 ls0 ws0">longitud<span class="_ _c"> </span>del<span class="_ _c"> </span>segmento<span class="_ _e"> </span>que<span class="_ _c"> </span>une<span class="_ _c"> </span>al<span class="_ _c"> </span>orto<span class="_ _24"></span>centro<span class="_ _e"> </span>del<span class="_ _c"> </span><span class="ffa">4<span class="_ _c"> </span></span>con<span class="_ _f"> </span>el<span class="_ _e"> </span>v´<span class="_ _a"></span>ertice<span class="_ _c"> </span>opuesto<span class="_ _c"> </span>al<span class="_ _c"> </span>lado.</div><div class="t m0 xa h7 y22a ff6 fs3 fc0 sc0 ls0 ws0">19<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Si<span class="_ _c"> </span><span class="ff8">AB<span class="_ _c"> </span><span class="ffa">⊥<span class="_ _20"> </span></span>C<span class="_ _28"></span>D<span class="_ _f"> </span></span>en<span class="_ _e"> </span><span class="ff8">N<span class="_ _13"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">AC</span></span></div><div class="t m0 x39 ha y22b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6 h7 y22a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">AD</span></div><div class="t m0 x8c ha y22b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf5 h7 y22a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">B<span class="_ _24"></span>C</span></div><div class="t m0 x66 ha y22b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x57 h7 y22a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">B<span class="_ _24"></span>D</span></div><div class="t m0 xf6 ha y22b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">20<span class="_ _9"></span><span class="ffa">·<span class="_ _28"></span></span>-<span class="_ _c"> </span>Si<span class="_ _e"> </span><span class="ff8">AA</span></div><div class="t m0 x9a ha y22d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf7 h7 y22c ffa fs3 fc0 sc0 ls0 ws0">⊥<span class="_ _20"> </span><span class="ff8">B<span class="_ _24"></span>B</span></div><div class="t m0 x20 ha y22d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf8 h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 xf9 ha y22e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb5 h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _33"> </span><span class="ff8">b</span></div><div class="t m0 x9f ha y22e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa0 h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>5<span class="ff8">c</span></div><div class="t m0 x62 ha y22e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xfa h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _e"> </span>con<span class="_ _c"> </span><span class="ff8">AA</span></div><div class="t m0 xbe ha y22d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xfb h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">mediana<span class="_ _e"> </span>de<span class="_ _c"> </span><span class="ff8">a<span class="_ _e"> </span></span>y<span class="_ _c"> </span><span class="ff8">B<span class="_ _9"></span>B</span></div><div class="t m0 xfc ha y22d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xfd h7 y22c ff6 fs3 fc0 sc0 ls0 ws0">mediana<span class="_ _e"> </span>de<span class="_ _c"> </span><span class="ff8">b<span class="_ _e"> </span></span>en</div><div class="t m0 xb h7 y22f ff6 fs3 fc0 sc0 ls0 ws0">un<span class="_ _c"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _13"> </span></span></span>(Esto<span class="_ _c"> </span>se<span class="_ _c"> </span>prueba<span class="_ _c"> </span>aplicando<span class="_ _c"> </span>19)</div><div class="t m0 xa h7 y230 ff6 fs3 fc0 sc0 ls0 ws0">21<span class="_ _1f"> </span><span class="ffa">·<span class="_ _29"></span></span>-<span class="_ _8"> </span>Lema<span class="_ _36"> </span>de<span class="_ _8"> </span>Ra<span class="_ _12"></span>v<span class="_ _10"></span>´<span class="_ _11"></span>ı:<span class="_ _8"> </span>En<span class="_ _8"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _28"></span></span></span>,<span class="_ _8"> </span><span class="ff8">I<span class="_ _16"> </span></span>es<span class="_ _8"> </span>el<span class="_ _8"> </span>incen<span class="_ _12"></span>tro,<span class="_ _8"> </span><span class="ff8">P<span class="_ _29"> </span></span>,<span class="_ _8"> </span><span class="ff8">Q</span>,<span class="_ _8"> </span><span class="ff8">R<span class="_ _36"> </span></span>pun<span class="_ _12"></span>tos<span class="_ _8"> </span>de<span class="_ _8"> </span>tangencia<span class="_ _8"> </span>del</div><div class="t m0 xb h7 y231 ff6 fs3 fc0 sc0 ls0 ws0">inc<span class="_ _10"></span>´<span class="_ _11"></span>ırculo<span class="_ _c"> </span>con<span class="_ _c"> </span>los<span class="_ _c"> </span>lados<span class="_ _c"> </span>del<span class="_ _c"> </span><span class="ffa">4<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒</span></div><div class="t m0 x7b h9 y232 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x35 h9 y233 ff8 fs3 fc0 sc0 ls0 ws0">C</div><div class="t m0 x22 h9 y234 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x31 h9 y235 ff8 fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xa8 h9 y236 ff8 fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x11 h9 y237 ff8 fs3 fc0 sc0 ls0 ws0">R</div><div class="t m0 x30 h9 y238 ff8 fs3 fc0 sc0 ls0 ws0">I</div><div class="t m0 xfe h9 y239 ff8 fs3 fc0 sc0 ls0 ws0">y</div><div class="t m0 xff h9 y23a ff8 fs3 fc0 sc0 ls0 ws0">y</div><div class="t m0 x69 h9 y23b ff8 fs3 fc0 sc0 ls0 ws0">m</div><div class="t m0 xa6 h9 y23c ff8 fs3 fc0 sc0 ls0 ws0">m</div><div class="t m0 x76 h9 y23d ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x4d h9 y23e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xec h7 y23f ff8 fs3 fc0 sc0 ls0 ws0">AR<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>AQ<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>x<span class="ff6">,<span class="_ _c"> </span></span>B<span class="_ _9"></span>R<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>B<span class="_ _9"></span>P<span class="_ _13"> </span><span class="ff6">=<span class="_"> </span></span>y<span class="_ _9"></span><span class="ff6">,<span class="_ _c"> </span></span>C<span class="_ _28"></span>P<span class="_ _13"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _28"></span>Q<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>m</div><div class="t m0 xec h7 y240 ffc fs3 fc0 sc0 ls0 ws0">∴<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>y<span class="_ _21"> </span><span class="ff6">+<span class="_ _1e"> </span></span>m<span class="ff6">,<span class="_ _c"> </span></span>b<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>m<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>x<span class="ff6">,<span class="_ _c"> </span></span>c<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>x<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>y</span></div><div class="t m0 xec h7 y241 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">m<span class="_ _20"> </span><span class="ff6">=</span></span></span></div><div class="t m0 x72 h7 y242 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x72 h7 y243 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x100 h7 y241 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a<span class="_ _1f"> </span></span>+<span class="_ _33"> </span><span class="ff8">b<span class="_ _33"> </span><span class="ffa">−<span class="_ _33"></span></span>c</span>),<span class="_ _e"> </span><span class="ff8">y<span class="_ _c"> </span></span>=</div><div class="t m0 xca h7 y242 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 xca h7 y243 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 x101 h7 y241 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">c<span class="_ _1f"> </span></span>+<span class="_ _33"> </span><span class="ff8">b<span class="_ _33"> </span><span class="ffa">−<span class="_ _33"></span></span>b</span>),<span class="_ _e"> </span><span class="ff8">x<span class="_ _20"> </span></span>=</div><div class="t m0 x102 h7 y242 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a</div><div class="t m0 x93 h7 y243 ff6 fs3 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa h7 y244 ff6 fs3 fc0 sc0 ls0 ws0">22<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-</div><div class="t m0 x7b h9 y245 ff8 fs3 fc0 sc0 ls0 ws0">T</div><div class="t m0 x3d h9 y246 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x103 h9 y247 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x104 h9 y248 ff8 fs3 fc0 sc0 ls0 ws0">ω</div><div class="t m0 x105 h7 y245 ff6 fs3 fc0 sc0 ls0 ws0">Γ</div><div class="t m0 x106 h9 y249 ff8 fs3 fc0 sc0 ls0 ws0">E</div><div class="t m0 x7d h9 y24a ff8 fs3 fc0 sc0 ls0 ws0">F</div><div class="t m0 xb1 h9 y24b ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x35 ha y24c ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x107 h9 y24d ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x3a ha y24e ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xb6 h7 y24f ff6 fs3 fc0 sc0 ls0 ws0">Si<span class="_ _e"> </span><span class="ff8">ω<span class="_ _f"> </span></span>y<span class="_ _c"> </span>Γ<span class="_ _c"> </span>son<span class="_ _e"> </span>dos<span class="_ _c"> </span>circunferencias<span class="_ _c"> </span>tangentes<span class="_ _20"> </span>in-</div><div class="t m0 xb6 h7 y250 ff6 fs3 fc0 sc0 ls0 ws0">ternas<span class="_ _c"> </span>en<span class="_ _c"> </span><span class="ff8">T<span class="_ _29"> </span></span>;<span class="_ _c"> </span><span class="ff8">A<span class="_ _c"> </span></span>y<span class="_ _f"> </span><span class="ff8">B<span class="_ _f"> </span></span>son<span class="_ _c"> </span>puntos<span class="_ _e"> </span>de<span class="_ _c"> </span>Γ,</div><div class="t m0 xb6 h9 y251 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 xe4 ha y252 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x99 h7 y251 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">T<span class="_ _29"> </span>A</span></div><div class="t m0 xba hb y253 ffb fs3 fc0 sc0 ls0 ws0">T</div><div class="t m0 xc8 h7 y251 ff8 fs3 fc0 sc0 ls0 ws0">ω<span class="_ _f"> </span><span class="ff6">y<span class="_ _c"> </span></span>B</div><div class="t m0 xd4 ha y252 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xca h7 y251 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">T<span class="_ _29"> </span>B</span></div><div class="t m0 xea hb y253 ffb fs3 fc0 sc0 ls0 ws0">T</div><div class="t m0 x108 h7 y251 ff6 fs3 fc0 sc0 ls0 ws0">Γ<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒</span></div><div class="t m0 x99 h9 y254 ff8 fs3 fc0 sc0 ls0 ws0">T<span class="_ _29"> </span>A</div><div class="t m0 x99 h9 y255 ff8 fs3 fc0 sc0 ls0 ws0">T<span class="_ _29"> </span>B</div><div class="t m0 x109 h7 y256 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xa9 h9 y254 ff8 fs3 fc0 sc0 ls0 ws0">AE</div><div class="t m0 xa9 h9 y255 ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>F</div><div class="t m0 xf6 h7 y256 ff6 fs3 fc0 sc0 ls0 ws0">siendo<span class="_"> </span><span class="ff8">AE<span class="_ _c"> </span></span>y<span class="_ _20"> </span><span class="ff8">B<span class="_ _9"></span>F<span class="_ _8"> </span></span>tangentes<span class="_"> </span>a<span class="_"> </span><span class="ff8">ω</span></div><div class="t m0 xb6 h7 y257 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _c"> </span>V<span class="_ _b"></span>ea<span class="_ _c"> </span>que<span class="_ _c"> </span><span class="ff8">A</span></div><div class="t m0 xc8 ha y258 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x10a h9 y257 ff8 fs3 fc0 sc0 ls0 ws0">B</div><div class="t m0 x10b ha y258 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x10c h7 y257 ffa fs3 fc0 sc0 ls0 ws0">k<span class="_ _20"> </span><span class="ff8">AB</span></div><div class="t m0 xb6 h7 y259 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>p<span class="_ _24"></span>otencia<span class="_ _c"> </span>de<span class="_ _c"> </span>un<span class="_ _c"> </span>punto</div><div class="t m0 x10d h9 y25a ff8 fs3 fc0 sc0 ls0 ws0">AE</div><div class="t m0 x10e ha y25b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10f h7 y25a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">AA</span></div><div class="t m0 xc7 ha y25c ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x24 h7 y25a ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff8">AT</span></div><div class="t m0 x10d h9 y25d ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _24"></span>F</div><div class="t m0 x10e ha y25e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10f h7 y25d ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">B<span class="_ _24"></span>B</span></div><div class="t m0 xc7 ha y25f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x24 h7 y25d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff8">B<span class="_ _24"></span>T<span class="_ _1f"> </span><span class="ff6">,<span class="_ _e"> </span>etc<span class="_ _f"> </span>...</span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf10" class="pf w0 h0" data-page-no="10"><div class="pc pc10 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">13</div><div class="t m0 xa h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">23<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-</div><div class="t m0 xe7 h9 y260 ff8 fs3 fc0 sc0 ls0 ws0">A</div><div class="t m0 x41 h9 y261 ff8 fs3 fc0 sc0 ls0 ws0">B<span class="_ _37"> </span>C</div><div class="t m0 x68 h9 y97 ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x3d h9 y262 ff8 fs3 fc0 sc0 ls0 ws0">E</div><div class="t m0 x2e h9 y263 ff8 fs3 fc0 sc0 ls0 ws0">F</div><div class="t m0 x3a h9 y97 ff8 fs3 fc0 sc0 ls0 ws0">X</div><div class="t m0 xcd h9 y264 ff8 fs3 fc0 sc0 ls0 ws0">Y</div><div class="t m0 xfe h9 y265 ff8 fs3 fc0 sc0 ls0 ws0">Z</div><div class="t m0 xe7 h9 y266 ff8 fs3 fc0 sc0 ls0 ws0">T</div><div class="t m0 xe7 h9 y267 ff8 fs3 fc0 sc0 ls0 ws0">σ</div><div class="t m0 x6b h9 y268 ff8 fs3 fc0 sc0 ls0 ws0">σ</div><div class="t m0 x3b he y269 ffd fs4 fc0 sc0 ls0 ws0">a</div><div class="t m0 x110 h7 y26a ff6 fs3 fc0 sc0 ls0 ws0">Si<span class="_ _38"> </span><span class="ff8">D<span class="_ _24"></span></span>,<span class="_ _38"> </span><span class="ff8">E<span class="_ _9"></span></span>,<span class="_ _38"> </span><span class="ff8">F<span class="_ _19"> </span></span>pun<span class="_ _3"></span>tos<span class="_ _38"> </span>de<span class="_ _38"> </span>tangencia<span class="_ _38"> </span>del</div><div class="t m0 x110 h7 y26b ff6 fs3 fc0 sc0 ls0 ws0">inc<span class="_ _10"></span>´<span class="_ _11"></span>ırculo<span class="_ _f"> </span>de<span class="_ _f"> </span>cen<span class="_ _12"></span>tro<span class="_ _f"> </span><span class="ff8">σ<span class="_ _13"> </span></span>en<span class="_ _f"> </span><span class="ffa">4<span class="ff8">AB<span class="_ _9"></span>C<span class="_ _28"></span></span></span>.<span class="_ _f"> </span>Si<span class="_ _f"> </span><span class="ff8">D<span class="_ _24"></span>T</span></div><div class="t m0 x110 h7 y26c ff6 fs3 fc0 sc0 ls0 ws0">es<span class="_ _2e"> </span>di´<span class="_ _d"></span>ametro;<span class="_ _2e"> </span>recta</div><div class="t m0 x111 h7 y26d ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _39"></span>→</div><div class="t m0 x111 h7 y26c ff8 fs3 fc0 sc0 ls0 ws0">AT<span class="_ _1d"> </span><span class="ff6">corta<span class="_ _2e"> </span></span>B<span class="_ _24"></span>C<span class="_ _19"> </span><span class="ff6">en</span></div><div class="t m0 x110 h7 y26e ff8 fs3 fc0 sc0 ls0 ws0">X<span class="_ _f"> </span><span class="ff6">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">B<span class="_ _24"></span>D<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>C<span class="_ _28"></span>X</span></span></span></div><div class="t m0 x110 h7 y26f ff6 fs3 fc0 sc0 ls0 ws0">Demostraci´<span class="_ _d"></span>on:</div><div class="t m0 x110 h7 y270 ff6 fs3 fc0 sc0 ls0 ws0">2<span class="ff8">B<span class="_ _24"></span>D<span class="_ _e"> </span></span>=<span class="_"> </span><span class="ff8">B<span class="_ _9"></span>C<span class="_ _e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">AB<span class="_ _20"> </span><span class="ffa">−<span class="_ _1e"> </span></span>AC<span class="_ _13"> </span></span>p<span class="_ _24"></span>or<span class="_ _c"> </span>21)</div><div class="t m0 x110 h7 y271 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">B<span class="_ _24"></span>F<span class="_ _f"> </span></span>+<span class="_ _1e"> </span><span class="ff8">B<span class="_ _9"></span>Z<span class="_ _e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _28"></span>D</span></div><div class="t m0 x110 h7 y272 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">F<span class="_ _29"> </span>Z<span class="_ _20"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _28"></span>D<span class="_ _e"> </span></span>=<span class="_"> </span><span class="ff8">E<span class="_ _28"></span>Y<span class="_ _8"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _27"></span>D</span></div><div class="t m0 x110 h7 y273 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">E<span class="_ _9"></span>C<span class="_ _20"> </span></span>+<span class="_ _1e"> </span><span class="ff8">C<span class="_ _28"></span>Y<span class="_ _36"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _28"></span>D<span class="_ _e"> </span></span>=<span class="_"> </span><span class="ff8">D<span class="_ _24"></span>C<span class="_ _20"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _27"></span>C<span class="_ _20"> </span></span>+<span class="_ _1e"> </span><span class="ff8">X<span class="_ _28"></span>D</span></div><div class="t m0 x110 h7 y274 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>2<span class="ff8">C<span class="_ _9"></span>X</span></div><div class="t m0 x110 h7 y275 ff8 fs3 fc0 sc0 ls0 ws0">Z<span class="_ _13"> </span><span class="ff6">y<span class="_ _e"> </span></span>Y<span class="_ _2f"> </span><span class="ff6">pun<span class="_ _12"></span>tos<span class="_ _e"> </span>de<span class="_ _e"> </span>tangencia<span class="_ _c"> </span>del<span class="_ _e"> </span>exc<span class="_ _10"></span>´<span class="_ _11"></span>ırculo</span></div><div class="t m0 x110 h7 y276 ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span><span class="ff8">A<span class="_ _c"> </span></span>con<span class="_ _c"> </span>lados</div><div class="t m0 xbf h7 y277 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _d"></span>−<span class="_ _a"></span>→</div><div class="t m0 xbf h7 y276 ff8 fs3 fc0 sc0 ls0 ws0">AB<span class="_ _f"> </span><span class="ff6">y</span></div><div class="t m0 xd9 h7 y277 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _3a"></span>→</div><div class="t m0 xd9 h9 y276 ff8 fs3 fc0 sc0 ls0 ws0">AC</div><div class="t m0 xa h7 y278 ff6 fs3 fc0 sc0 ls0 ws0">24,<span class="_ _c"> </span>25,<span class="_ _c"> </span>26<span class="_ _c"> </span>...<span class="_ _c"> </span>pueden<span class="_ _c"> </span>ser<span class="_ _c"> </span>sugerencias<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>amigos<span class="_ _c"> </span>de<span class="_ _f"> </span>la<span class="_ _e"> </span>matem´<span class="_ _a"></span>atica.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf11" class="pf w0 h0" data-page-no="11"><div class="pc pc11 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">14</div><div class="t m0 xb h5 yc1 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#5</div><div class="t m0 xa h7 y279 ff6 fs3 fc0 sc0 ls0 ws0">Comenzamos<span class="_"> </span>con<span class="_ _e"> </span>la<span class="_ _20"> </span>entrega<span class="_"> </span>de<span class="_ _e"> </span>notas<span class="_"> </span>relacionadas<span class="_ _e"> </span>con<span class="_ _e"> </span>la<span class="_"> </span>T<span class="_ _b"></span>eor<span class="_ _10"></span>´<span class="_ _11"></span>ıa<span class="_ _e"> </span>de<span class="_"> </span>N<span class="_ _24"></span>´<span class="_ _d"></span>umeros<span class="_ _e"> </span>(TN)<span class="_"> </span>y<span class="_ _e"> </span>el</div><div class="t m0 xb h7 y27a ff6 fs3 fc0 sc0 ls0 ws0">´<span class="_ _d"></span>alebra.<span class="_ _c"> </span>Aqu<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _c"> </span>v<span class="_ _3"></span>a<span class="_ _e"> </span>a<span class="_ _c"> </span>hab<span class="_ _24"></span>er<span class="_ _c"> </span>para<span class="_ _c"> </span>to<span class="_ _24"></span>dos<span class="_ _c"> </span>los<span class="_ _c"> </span>gustos,<span class="_ _c"> </span>desde<span class="_ _c"> </span>notas<span class="_ _e"> </span>trilladas<span class="_ _c"> </span>en<span class="_ _c"> </span>nuestra<span class="_ _e"> </span>ense<span class="_ _24"></span>˜<span class="_ _d"></span>nanza</div><div class="t m0 xb h7 y27b ff6 fs3 fc0 sc0 ls0 ws0">media<span class="_ _c"> </span>hasta<span class="_ _c"> </span>notas<span class="_ _c"> </span>necesarias<span class="_ _c"> </span>para<span class="_ _c"> </span>alumnos<span class="_ _c"> </span>de<span class="_ _c"> </span>alto<span class="_ _f"> </span>rendimien<span class="_ _3"></span>to.</div><div class="t m0 xa h7 y27c ff6 fs3 fc0 sc0 ls0 ws0">1<span class="_ _27"></span><span class="ffa">·<span class="_ _28"></span></span>-<span class="_ _f"> </span>Un<span class="_ _c"> </span>#<span class="_ _f"> </span>cualquiera<span class="_ _c"> </span>puede<span class="_ _f"> </span>expresarse<span class="_ _c"> </span>en<span class="_ _f"> </span>el<span class="_ _c"> </span>sistema<span class="_ _f"> </span>decimal<span class="_ _c"> </span>como<span class="_ _f"> </span>suma<span class="_ _c"> </span>de<span class="_ _f"> </span>potencias</div><div class="t m0 xb h7 y27d ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>base<span class="_ _c"> </span>10.<span class="_ _c"> </span>Por<span class="_ _e"> </span>ejemplo:<span class="_ _c"> </span><span class="ff8">abc<span class="_ _20"> </span></span>=<span class="_"> </span>100<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>10<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>,<span class="_ _c"> </span><span class="ff8">abcd<span class="_ _20"> </span></span>=<span class="_"> </span>1000<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>100<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>10<span class="ff8">c<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">d</span></div><div class="t m0 xa h7 y27e ff6 fs3 fc0 sc0 ls0 ws0">2<span class="ffa">·<span class="_ _3"></span><span class="ff6">-<span class="_"> </span>Un<span class="_"> </span>#<span class="_"> </span>lo<span class="_"> </span>llamamos<span class="_"> </span>Cuadrado<span class="_"> </span>P<span class="_ _3"></span>erfecto<span class="_"> </span>cuando<span class="_"> </span>su<span class="_"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ız<span class="_"> </span>cuadrada<span class="_"> </span>es<span class="_"> </span>un<span class="_"> </span>n<span class="_ _24"></span>´<span class="_ _d"></span>umero<span class="_"> </span>en<span class="_ _3"></span>tero</span></span></div><div class="t m0 xb h7 y27f ff6 fs3 fc0 sc0 ls0 ws0">(0<span class="ff8">,<span class="_ _1f"> </span></span>1<span class="ff8">,<span class="_ _1f"> </span></span>4<span class="ff8">,<span class="_ _1f"> </span></span>9<span class="ff8">,<span class="_ _1f"> </span></span>16<span class="ff8">,<span class="_ _1f"> </span>...,<span class="_ _1f"> </span>n</span></div><div class="t m0 x2d ha y280 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xaf h7 y27f ff6 fs3 fc0 sc0 ls0 ws0">).<span class="_ _c"> </span>V<span class="_ _b"></span>ea<span class="_ _c"> </span>que<span class="_ _f"> </span>la<span class="_ _e"> </span>diferencia<span class="_ _f"> </span>de<span class="_ _e"> </span>dos<span class="_ _f"> </span>(CP)<span class="_ _c"> </span>consecutiv<span class="_ _12"></span>os<span class="_ _c"> </span>es<span class="_ _c"> </span>igual<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _c"> </span>suma<span class="_ _c"> </span>de</div><div class="t m0 xb h7 y281 ff6 fs3 fc0 sc0 ls0 ws0">las<span class="_ _c"> </span>raices<span class="_ _c"> </span>cuadradas<span class="_ _c"> </span>de<span class="_ _c"> </span>ambos<span class="_ _c"> </span>#<span class="_ _c"> </span>ejemplo:<span class="_ _c"> </span>49<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>36<span class="_"> </span>=<span class="_"> </span>13<span class="_"> </span>=<span class="_"> </span>7<span class="_ _1e"> </span>+<span class="_ _1e"> </span>6</div><div class="t m0 xa h7 y282 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="_ _24"></span><span class="ffa">·<span class="_ _9"></span></span>-<span class="_ _e"> </span>M<span class="_ _24"></span>´<span class="_ _d"></span>ultiplos<span class="_"> </span>y<span class="_ _e"> </span>Divisores<span class="_ _e"> </span>de<span class="_ _e"> </span>un<span class="_ _e"> </span>#.<span class="_ _e"> </span>Ejemplo:<span class="_ _c"> </span>M<span class="_ _24"></span>´<span class="_ _d"></span>ultiplos<span class="_"> </span>de<span class="_ _e"> </span>6:<span class="_ _e"> </span>0<span class="ff8">,<span class="_ _1f"> </span></span>6<span class="ff8">,<span class="_ _1f"> </span></span>12<span class="ff8">,<span class="_ _1f"> </span></span>18<span class="ff8">,<span class="_ _1f"> </span>...<span class="_ _e"> </span></span>Divisores<span class="_ _e"> </span>de</div><div class="t m0 xb h7 y283 ff6 fs3 fc0 sc0 ls0 ws0">24:<span class="_ _c"> </span>1<span class="ff8">,<span class="_ _1f"> </span></span>2<span class="ff8">,<span class="_ _1f"> </span></span>3<span class="ff8">,<span class="_ _1f"> </span></span>4<span class="ff8">,<span class="_ _1f"> </span></span>6<span class="ff8">,<span class="_ _1f"> </span></span>8<span class="ff8">,<span class="_ _1f"> </span></span>24.</div><div class="t m0 xa h7 y284 ff6 fs3 fc0 sc0 ls0 ws0">4<span class="_ _1f"> </span><span class="ffa">·<span class="_ _33"></span></span>-<span class="_ _16"> </span>N´<span class="_ _d"></span>umeros<span class="_ _6"> </span>Primos:<span class="_ _6"> </span>Son<span class="_ _6"> </span>los<span class="_ _6"> </span>que<span class="_ _6"> </span>p<span class="_ _24"></span>oseen<span class="_ _6"> </span>2<span class="_ _6"> </span>divisores<span class="_ _6"> </span>(2<span class="ff8">,<span class="_ _1f"> </span></span>3<span class="ff8">,<span class="_ _1f"> </span></span>5<span class="ff8">,<span class="_ _1f"> </span></span>7<span class="ff8">,<span class="_ _1f"> </span></span>11<span class="ff8">,<span class="_ _1f"> </span></span>13<span class="ff8">,<span class="_ _1f"> </span>...</span>).<span class="_ _6"> </span>N<span class="_ _24"></span>´<span class="_ _d"></span>umeros</div><div class="t m0 xb h7 y285 ff6 fs3 fc0 sc0 ls0 ws0">Primos<span class="_ _20"> </span>entre<span class="_"> </span>s<span class="_ _10"></span>´<span class="_ _11"></span>ı:<span class="_ _e"> </span>Son<span class="_ _e"> </span>aquellos<span class="_ _e"> </span>que<span class="_ _e"> </span>solo<span class="_ _e"> </span>tienen<span class="_ _e"> </span>al<span class="_ _e"> </span>uno<span class="_ _20"> </span>como<span class="_ _e"> </span>divisor<span class="_ _e"> </span>com<span class="_ _24"></span>´<span class="_ _d"></span>un.<span class="_ _e"> </span>Ejemplo:<span class="_ _e"> </span>3<span class="_ _20"> </span>y<span class="_ _e"> </span>10,</div><div class="t m0 xb h7 y286 ff6 fs3 fc0 sc0 ls0 ws0">11<span class="_ _c"> </span>y<span class="_ _c"> </span>17,<span class="_ _c"> </span>4<span class="_ _c"> </span>y<span class="_ _c"> </span>9,<span class="_ _c"> </span>5,<span class="_ _c"> </span>8<span class="_ _f"> </span>y<span class="_ _e"> </span>21<span class="_ _c"> </span>...</div><div class="t m0 xa h7 y287 ff6 fs3 fc0 sc0 ls0 ws0">5<span class="_ _27"></span><span class="ffa">·<span class="_ _28"></span></span>-<span class="_ _f"> </span>M´<span class="_ _d"></span>aximo<span class="_ _f"> </span>Com´<span class="_ _d"></span>un<span class="_ _c"> </span>Divisor<span class="_ _f"> </span>(<span class="fff">mcd</span>):<span class="_ _c"> </span>De<span class="_ _f"> </span>todos<span class="_ _f"> </span>los<span class="_ _c"> </span>divisores<span class="_ _f"> </span>com<span class="_ _3"></span>unes<span class="_ _f"> </span>de<span class="_ _c"> </span>dos<span class="_ _c"> </span>o<span class="_ _f"> </span>v<span class="_ _b"></span>arios<span class="_ _f"> </span>#,</div><div class="t m0 xb h7 y288 ff6 fs3 fc0 sc0 ls0 ws0">el<span class="_ _c"> </span>ma<span class="_ _12"></span>y<span class="_ _3"></span>or<span class="_ _f"> </span>es<span class="_ _e"> </span>el<span class="_ _c"> </span><span class="fff">mcd</span>.<span class="_ _c"> </span>Ejemplo:<span class="_ _f"> </span><span class="fff">mcd</span>(24<span class="ff8">,<span class="_ _1f"> </span></span>32)<span class="_"> </span>=<span class="_"> </span>8.</div><div class="t m0 xa h7 y289 ff6 fs3 fc0 sc0 ls0 ws0">M<span class="_ _10"></span>´<span class="_ _11"></span>ınimo<span class="_ _c"> </span>Com<span class="_ _24"></span>´<span class="_ _d"></span>un<span class="_ _e"> </span>M<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>(<span class="fff">mcm</span>):<span class="_ _c"> </span>De<span class="_ _c"> </span>to<span class="_ _24"></span>dos<span class="_ _f"> </span>los<span class="_ _e"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplos<span class="_ _c"> </span>comunes<span class="_ _e"> </span>de<span class="_ _c"> </span>dos<span class="_ _f"> </span>o<span class="_ _e"> </span>v<span class="_ _3"></span>arios<span class="_ _c"> </span>#,<span class="_ _c"> </span>el</div><div class="t m0 xb h7 y28a ff6 fs3 fc0 sc0 ls0 ws0">menor<span class="_ _c"> </span>es<span class="_ _c"> </span>el<span class="_ _c"> </span><span class="fff">mcm</span>.<span class="_ _c"> </span>Ejemplo:<span class="_ _c"> </span><span class="fff">mcm</span>(8<span class="ff8">,<span class="_ _1f"> </span></span>10)<span class="_"> </span>=<span class="_"> </span>40</div><div class="t m0 xa h7 y28b ff6 fs3 fc0 sc0 ls0 ws0">¿C´<span class="_ _d"></span>omo<span class="_ _c"> </span>determinar<span class="_ _c"> </span>el<span class="_ _f"> </span>(<span class="fff">mcd</span>)<span class="_ _e"> </span>y<span class="_ _c"> </span>el<span class="_ _f"> </span>(<span class="fff">mcm</span>)<span class="_ _e"> </span>entre<span class="_ _e"> </span>v<span class="_ _3"></span>arios<span class="_ _c"> </span>n<span class="_ _24"></span>´<span class="_ _d"></span>umeros?</div><div class="t m0 xa h7 y28c ff6 fs3 fc0 sc0 ls0 ws0">Ejemplo:<span class="_ _c"> </span>Sean<span class="_ _c"> </span><span class="ff8">A<span class="_ _20"> </span></span>=<span class="_"> </span>30600,<span class="_ _c"> </span><span class="ff8">B<span class="_ _c"> </span></span>=<span class="_"> </span>4340,<span class="_ _c"> </span><span class="ff8">C<span class="_ _f"> </span></span>=<span class="_"> </span>2674200</div><div class="t m0 x81 h7 y28d ff6 fs3 fc0 sc0 ls0 ws0">o<span class="_ _c"> </span>sea<span class="_ _c"> </span><span class="ff8">A<span class="_ _20"> </span></span>=<span class="_"> </span>2</div><div class="t m0 x9d ha y28e ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x8e h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5</span></div><div class="t m0 x104 ha y28e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3c h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">7<span class="_ _1e"> </span></span>·<span class="_ _1e"> </span><span class="ff6">19,<span class="_ _c"> </span><span class="ff8">B<span class="_ _c"> </span></span>=<span class="_"> </span>2</span></div><div class="t m0 x3e ha y28e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf5 h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5<span class="_ _1e"> </span></span>·<span class="_ _1e"> </span><span class="ff6">7<span class="_ _1e"> </span></span>·<span class="_ _1e"> </span><span class="ff6">31,<span class="_ _c"> </span><span class="ff8">C<span class="_ _c"> </span></span>=<span class="_"> </span>2</span></div><div class="t m0 x112 ha y28e ff9 fs4 fc0 sc0 ls0 ws0">4</div><div class="t m0 xde h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5</span></div><div class="t m0 x113 ha y28e ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x114 h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">19</span></div><div class="t m0 x115 ha y28e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x116 h7 y28d ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">37</span></div><div class="t m0 xa h7 y28f ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _16"> </span><span class="fff">mcd<span class="ff6">(<span class="ff8">A,<span class="_ _1f"> </span>B<span class="_ _24"></span>,<span class="_ _1f"> </span>C<span class="_ _28"></span></span>)<span class="_ _16"> </span>=<span class="_ _16"> </span>2</span></span></span></div><div class="t m0 x117 ha y290 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x37 h7 y28f ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _e"> </span><span class="ff6">5<span class="_ _16"> </span>=<span class="_ _6"> </span>20<span class="_ _6"> </span>(V<span class="_ _b"></span>ea<span class="_ _6"> </span>que<span class="_ _36"> </span>se<span class="_ _6"> </span>toman<span class="_ _6"> </span>solo<span class="_ _36"> </span>las<span class="_ _6"> </span>bases<span class="_ _36"> </span>comunes<span class="_ _36"> </span>de<span class="_ _6"> </span>las</span></div><div class="t m0 xb h7 y291 ff6 fs3 fc0 sc0 ls0 ws0">p<span class="_ _24"></span>otencias<span class="_ _c"> </span>elev<span class="_ _3"></span>adas<span class="_ _c"> </span>al<span class="_ _c"> </span>menor<span class="_ _c"> </span>exp<span class="_ _24"></span>onente)</div><div class="t m0 x118 h7 y292 fff fs3 fc0 sc0 ls0 ws0">mcd<span class="ff6">(<span class="ff8">B<span class="_ _24"></span>,<span class="_ _33"> </span>C<span class="_ _9"></span></span>)<span class="_"> </span>=<span class="_"> </span>2</span></div><div class="t m0 x119 ha y293 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6b h7 y292 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5<span class="_"> </span>=<span class="_"> </span>20</span></div><div class="t m0 x118 h7 y294 fff fs3 fc0 sc0 ls0 ws0">mcd<span class="ff6">(<span class="ff8">A,<span class="_ _1f"> </span>C<span class="_ _9"></span></span>)<span class="_"> </span>=<span class="_"> </span>2</span></div><div class="t m0 xac ha y295 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x6b h7 y294 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5</span></div><div class="t m0 x8e ha y295 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x68 h7 y294 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">19<span class="_"> </span>=<span class="_"> </span>3800</span></div><div class="t m0 x118 h7 y296 fff fs3 fc0 sc0 ls0 ws0">mcm<span class="ff6">(<span class="ff8">A,<span class="_ _1f"> </span>B<span class="_ _9"></span>,<span class="_ _1f"> </span>C<span class="_ _9"></span></span>)<span class="_ _e"> </span>=<span class="_ _e"> </span>2</span></div><div class="t m0 x36 ha y297 ff9 fs4 fc0 sc0 ls0 ws0">4</div><div class="t m0 xf h7 y296 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5</span></div><div class="t m0 xf9 ha y297 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xb5 h7 y296 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">7<span class="_ _1e"> </span></span>·<span class="_ _21"> </span><span class="ff6">19</span></div><div class="t m0 xdc ha y297 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xcf h7 y296 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">31<span class="_ _1e"> </span></span>·<span class="_ _21"> </span><span class="ff6">37<span class="_ _f"> </span>(V<span class="_ _10"></span>ean<span class="_ _f"> </span>que<span class="_ _c"> </span>se<span class="_ _f"> </span>toman<span class="_ _f"> </span>todas<span class="_ _f"> </span>las<span class="_ _c"> </span>bases<span class="_ _f"> </span>de<span class="_ _c"> </span>las</span></div><div class="t m0 xb h7 y298 ff6 fs3 fc0 sc0 ls0 ws0">p<span class="_ _24"></span>otencias<span class="_ _c"> </span>y<span class="_ _c"> </span>entre<span class="_ _e"> </span>las<span class="_ _c"> </span>comunes<span class="_ _e"> </span>la<span class="_ _c"> </span>de<span class="_ _c"> </span>may<span class="_ _3"></span>or<span class="_ _c"> </span>exp<span class="_ _24"></span>onente)</div><div class="t m0 x118 h7 y299 fff fs3 fc0 sc0 ls0 ws0">mcm<span class="ff6">(<span class="ff8">A,<span class="_ _1f"> </span>B<span class="_ _9"></span></span>)<span class="_"> </span>=<span class="_"> </span>2</span></div><div class="t m0 xac ha y29a ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x6b h7 y299 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">5</span></div><div class="t m0 x8e ha y29a ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x68 h7 y299 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span><span class="ff6">7<span class="_ _1e"> </span></span>·<span class="_ _1e"> </span><span class="ff6">19<span class="_ _1e"> </span></span>·<span class="_ _1e"> </span><span class="ff6">31</span></div><div class="t m0 xa h7 y29b ff6 fs3 fc0 sc0 ls0 ws0">6<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Reglas<span class="_ _c"> </span>de<span class="_ _c"> </span>divisibilidad:<span class="_ _c"> </span>Un<span class="_ _c"> </span>#<span class="_ _c"> </span>es<span class="_ _f"> </span>divisible<span class="_ _e"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>...</div><div class="t m0 xce h7 y29c ff6 fs3 fc0 sc0 ls0 ws0">2<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>su<span class="_ _f"> </span>´<span class="_ _d"></span>ultima<span class="_ _c"> </span>cifra<span class="_ _c"> </span>es<span class="_ _c"> </span>par<span class="_ _c"> </span>o<span class="_ _c"> </span>es<span class="_ _c"> </span>=<span class="_"> </span>0</div><div class="t m0 xce h7 y29d ff6 fs3 fc0 sc0 ls0 ws0">5<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>su<span class="_ _f"> </span>´<span class="_ _d"></span>ultima<span class="_ _c"> </span>cifra<span class="_ _c"> </span>es<span class="_ _c"> </span>0<span class="_ _c"> </span>o<span class="_ _c"> </span>5</div><div class="t m0 xd6 h7 y29e ff6 fs3 fc0 sc0 ls0 ws0">10<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>su<span class="_ _f"> </span>´<span class="_ _d"></span>ultima<span class="_ _c"> </span>cifra<span class="_ _c"> </span>es<span class="_ _c"> </span>=<span class="_"> </span>0</div><div class="t m0 xce h7 y29f ff6 fs3 fc0 sc0 ls0 ws0">3<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>al<span class="_ _c"> </span>sumar<span class="_ _c"> </span>to<span class="_ _24"></span>das<span class="_ _f"> </span>sus<span class="_ _e"> </span>cifras<span class="_ _c"> </span>se<span class="_ _c"> </span>obtiene<span class="_ _f"> </span>un<span class="_ _e"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>3</div><div class="t m0 xce h7 y2a0 ff6 fs3 fc0 sc0 ls0 ws0">9<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>al<span class="_ _c"> </span>sumar<span class="_ _c"> </span>to<span class="_ _24"></span>das<span class="_ _f"> </span>sus<span class="_ _e"> </span>cifras<span class="_ _c"> </span>se<span class="_ _c"> </span>obtiene<span class="_ _f"> </span>un<span class="_ _e"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>9</div><div class="t m0 xce h7 y49 ff6 fs3 fc0 sc0 ls0 ws0">4<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>las<span class="_ _c"> </span>dos<span class="_ _f"> </span>´<span class="_ _d"></span>ultimas<span class="_ _c"> </span>cifras<span class="_ _c"> </span>del<span class="_ _c"> </span>#<span class="_ _c"> </span>conforman<span class="_ _c"> </span>un<span class="_ _c"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>4</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf12" class="pf w0 h0" data-page-no="12"><div class="pc pc12 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">15</div><div class="t m0 xce h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">8<span class="ffa">−<span class="_ _16"> </span></span>si<span class="_ _e"> </span>las<span class="_ _c"> </span>tres<span class="_ _f"> </span>´<span class="_ _d"></span>ultimas<span class="_ _c"> </span>cifras<span class="_ _c"> </span>del<span class="_ _c"> </span>#<span class="_ _c"> </span>conforman<span class="_ _c"> </span>un<span class="_ _c"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>8</div><div class="t m0 xd6 h7 y2a1 ff6 fs3 fc0 sc0 ls0 ws0">11<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _f"> </span>al<span class="_ _f"> </span>restar<span class="_ _13"> </span>los<span class="_ _f"> </span>dos<span class="_ _f"> </span>resultados<span class="_ _13"> </span>de<span class="_ _f"> </span>sumar<span class="_ _13"> </span>las<span class="_ _f"> </span>cifras<span class="_ _f"> </span>de<span class="_ _13"> </span>orden<span class="_ _f"> </span>par<span class="_ _13"> </span>y<span class="_ _f"> </span>las<span class="_ _f"> </span>de</div><div class="t m0 x5f h7 y2a2 ff6 fs3 fc0 sc0 ls0 ws0">orden<span class="_ _c"> </span>impar,<span class="_ _c"> </span>se<span class="_ _c"> </span>obtiene<span class="_ _c"> </span>un<span class="_ _c"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>11,<span class="_ _c"> </span>veamos...</div><div class="t m0 x11a h9 y2a3 ff8 fs3 fc0 sc0 ls0 ws0">abcde<span class="_ _3b"> </span>S</div><div class="t m0 xac ha y2a4 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6b h7 y2a3 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">d<span class="_ _3b"> </span>S</span></div><div class="t m0 xec ha y2a4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xad h7 y2a3 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">d<span class="_ _3b"> </span><span class="ffa">|</span>S</span></div><div class="t m0 x11b ha y2a4 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x6c h7 y2a3 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff8">S</span></div><div class="t m0 xef ha y2a4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xd4 h7 y2a3 ffa fs3 fc0 sc0 ls0 ws0">|<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>11<span class="ff8">k</span></span></div><div class="t m0 xce h7 y2a5 ff6 fs3 fc0 sc0 ls0 ws0">6<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _e"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>2<span class="_ _e"> </span>y<span class="_ _c"> </span>3<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _e"> </span>misma<span class="_ _c"> </span>vez</div><div class="t m0 xd6 h7 y2a6 ff6 fs3 fc0 sc0 ls0 ws0">12<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _e"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>3<span class="_ _e"> </span>y<span class="_ _c"> </span>4<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _e"> </span>misma<span class="_ _c"> </span>vez</div><div class="t m0 xd6 h7 y2a7 ff6 fs3 fc0 sc0 ls0 ws0">15<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _e"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>3<span class="_ _e"> </span>y<span class="_ _c"> </span>5<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _e"> </span>misma<span class="_ _c"> </span>vez</div><div class="t m0 xd6 h7 y2a8 ff6 fs3 fc0 sc0 ls0 ws0">36<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _e"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>4<span class="_ _e"> </span>y<span class="_ _c"> </span>9<span class="_ _c"> </span>a<span class="_ _f"> </span>la<span class="_ _e"> </span>misma<span class="_ _c"> </span>vez</div><div class="t m0 x11a h7 y2a9 ff6 fs3 fc0 sc0 ls0 ws0">V<span class="_ _b"></span>ea<span class="_ _c"> </span>que<span class="_ _c"> </span>2<span class="_ _c"> </span>y<span class="_ _c"> </span>3,<span class="_ _c"> </span>3<span class="_ _c"> </span>y<span class="_ _c"> </span>4,<span class="_ _f"> </span>3<span class="_ _e"> </span>y<span class="_ _c"> </span>5,<span class="_ _c"> </span>4<span class="_ _f"> </span>y<span class="_ _e"> </span>9<span class="_ _c"> </span>son<span class="_ _f"> </span>#<span class="_ _e"> </span>primos<span class="_ _c"> </span>entre<span class="_ _e"> </span>s<span class="_ _10"></span>´<span class="_ _11"></span>ı</div><div class="t m0 x11a h7 y2aa ff6 fs3 fc0 sc0 ls0 ws0">Ejemplo:<span class="_ _c"> </span>1536<span class="_ _c"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or:<span class="_ _c"> </span>1<span class="ff8">,<span class="_ _1f"> </span></span>2<span class="ff8">,<span class="_ _1f"> </span></span>3<span class="ff8">,<span class="_ _1f"> </span></span>4<span class="ff8">,<span class="_ _1f"> </span></span>6<span class="ff8">,<span class="_ _1f"> </span></span>8<span class="ff8">,<span class="_ _1f"> </span></span>12<span class="ff8">,<span class="_ _1f"> </span>...,<span class="_ _1f"> </span></span>1536</div><div class="t m0 xd5 h7 y2ab ff6 fs3 fc0 sc0 ls0 ws0">no<span class="_ _c"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or:<span class="_ _c"> </span>5<span class="ff8">,<span class="_ _1f"> </span></span>10<span class="ff8">,<span class="_ _1f"> </span></span>9<span class="ff8">,<span class="_ _1f"> </span></span>11<span class="ff8">,<span class="_ _1f"> </span></span>36<span class="ff8">,<span class="_ _1f"> </span>...</span></div><div class="t m0 xce h7 y2ac ff6 fs3 fc0 sc0 ls0 ws0">7<span class="ffa">−<span class="_ _16"> </span></span>cuando<span class="_ _c"> </span>separamos<span class="_ _f"> </span>su<span class="_ _f"> </span>´<span class="_ _d"></span>ultima<span class="_ _c"> </span>cifra<span class="_ _f"> </span>y<span class="_ _f"> </span>m<span class="_ _3"></span>ultiplic´<span class="_ _a"></span>andola<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _f"> </span>2,<span class="_ _c"> </span>dicho<span class="_ _c"> </span>resultado<span class="_ _f"> </span>se</div><div class="t m0 x5f h7 y2ad ff6 fs3 fc0 sc0 ls0 ws0">le<span class="_ _13"> </span>resta<span class="_ _8"> </span>al<span class="_ _8"> </span>#<span class="_ _13"> </span>que<span class="_ _8"> </span>result´<span class="_ _d"></span>o<span class="_ _8"> </span>de<span class="_ _8"> </span>suprimir<span class="_ _13"> </span>la<span class="_ _36"> </span>´<span class="_ _d"></span>ultima<span class="_ _13"> </span>cifra<span class="_ _8"> </span>al<span class="_ _8"> </span>#<span class="_ _13"> </span>original,<span class="_ _8"> </span>obteniendo<span class="_ _13"> </span>un</div><div class="t m0 x5f h7 y2ae ff6 fs3 fc0 sc0 ls0 ws0">m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _e"> </span>de<span class="_ _c"> </span>7</div><div class="t m0 x11a h7 y2af ff6 fs3 fc0 sc0 ls0 ws0">Ejemplo:<span class="_"> </span>51492<span class="_ _e"> </span>:<span class="_ _e"> </span>2<span class="_ _29"> </span><span class="ffa">·<span class="_ _1f"></span></span>2<span class="_"> </span>=<span class="_"> </span>4,<span class="_"> </span>5149<span class="_ _1f"> </span><span class="ffa">−<span class="_ _29"></span></span>4<span class="_"> </span>=<span class="_"> </span>5145,<span class="_ _e"> </span>5<span class="_ _1f"> </span><span class="ffa">·<span class="_ _29"></span></span>2<span class="_"> </span>=<span class="_"> </span>10,<span class="_ _20"> </span>514<span class="_ _1f"> </span><span class="ffa">−<span class="_ _29"></span></span>10<span class="_"> </span>=<span class="_"> </span>504,<span class="_ _e"> </span>4<span class="_ _1f"> </span><span class="ffa">·<span class="_ _29"></span></span>2<span class="_"> </span>=<span class="_"> </span>8</div><div class="t m0 x11a h7 y2b0 ff6 fs3 fc0 sc0 ls0 ws0">50<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>8<span class="_"> </span>=<span class="_"> </span>42<span class="_ _c"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff6">51492<span class="_ _c"> </span>es<span class="_ _c"> </span>m<span class="_ _24"></span>´<span class="_ _d"></span>ultiplo<span class="_ _c"> </span>de<span class="_ _c"> </span>7</span></span></div><div class="t m0 xa h7 y2b1 ff6 fs3 fc0 sc0 ls0 ws0">Ahora<span class="_ _8"> </span>existe<span class="_ _8"> </span>una<span class="_ _8"> </span>regla<span class="_ _8"> </span>general<span class="_ _8"> </span>que<span class="_ _8"> </span>nos<span class="_ _8"> </span>p<span class="_ _24"></span>ermite<span class="_ _8"> </span>obtener<span class="_ _8"> </span>la<span class="_ _8"> </span>regla<span class="_ _8"> </span>de<span class="_ _8"> </span>divisibilidad<span class="_ _8"> </span>de</div><div class="t m0 xb h7 y2b2 ff6 fs3 fc0 sc0 ls0 ws0">cualquier<span class="_"> </span>#<span class="_ _1e"> </span>primo.<span class="_"> </span>En<span class="_"> </span>cualquier<span class="_ _21"> </span>caso<span class="_"> </span>debemos<span class="_"> </span>separar<span class="_ _21"> </span>la<span class="_"> </span>´<span class="_ _d"></span>ultima<span class="_"> </span>cifra<span class="_ _21"> </span>del<span class="_"> </span>#<span class="_ _21"> </span>y<span class="_"> </span>m<span class="_ _3"></span>ultiplicarlo</div><div class="t m0 xb h7 y2b3 ff6 fs3 fc0 sc0 ls0 ws0">p<span class="_ _24"></span>or<span class="_ _f"> </span>un<span class="_ _13"> </span>#n<span class="_ _13"> </span><span class="ff8">n<span class="_ _f"> </span></span>y<span class="_ _13"> </span>luego<span class="_ _f"> </span>realizar<span class="_ _13"> </span>el<span class="_ _13"> </span>mismo<span class="_ _f"> </span>algoritmo<span class="_ _13"> </span>que<span class="_ _13"> </span>la<span class="_ _f"> </span>regla<span class="_ _13"> </span>del<span class="_ _f"> </span>7.<span class="_ _13"> </span>El<span class="_ _13"> </span>problema<span class="_ _f"> </span>es<span class="_ _13"> </span>v<span class="_ _3"></span>er</div><div class="t m0 xb h7 y2b4 ff6 fs3 fc0 sc0 ls0 ws0">qui<span class="_ _3"></span>´<span class="_ _25"></span>en<span class="_ _c"> </span>es<span class="_ _c"> </span><span class="ff8">n</span>.</div><div class="t m0 xa h7 y2b5 ff6 fs3 fc0 sc0 ls0 ws0">Deb<span class="_ _24"></span>emos<span class="_ _c"> </span>buscar<span class="_ _c"> </span>qu´<span class="_ _a"></span>e<span class="_ _c"> </span>d<span class="_ _10"></span>´<span class="_ _11"></span>ıgitos<span class="_ _c"> </span>multiplicados<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>el<span class="_ _c"> </span>#<span class="_ _f"> </span>al<span class="_ _c"> </span>cual<span class="_ _c"> </span>le<span class="_ _f"> </span>estamos<span class="_ _e"> </span>inv<span class="_ _3"></span>estigando<span class="_ _f"> </span>la</div><div class="t m0 xb h7 y2b6 ff6 fs3 fc0 sc0 ls0 ws0">regla<span class="_ _13"> </span>de<span class="_ _13"> </span>divisibilidad<span class="_ _13"> </span>,<span class="_ _f"> </span>da<span class="_ _13"> </span>como<span class="_ _13"> </span>resultado<span class="_ _13"> </span>un<span class="_ _13"> </span>#<span class="_ _13"> </span>cuy<span class="_ _12"></span>a<span class="_ _8"> </span>´<span class="_ _d"></span>ultima<span class="_ _f"> </span>cifra<span class="_ _13"> </span>es<span class="_ _13"> </span>=<span class="_ _13"> </span>1.<span class="_ _f"> </span>Del<span class="_ _13"> </span>resultado</div><div class="t m0 xb h7 y2b7 ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _e"> </span>este<span class="_ _c"> </span>pro<span class="_ _24"></span>ducto<span class="_ _c"> </span>nos<span class="_ _c"> </span>in<span class="_ _3"></span>teresa<span class="_ _c"> </span>solo<span class="_ _c"> </span>las<span class="_ _c"> </span>cifras<span class="_ _e"> </span>que<span class="_ _c"> </span>queden<span class="_ _c"> </span>a<span class="_ _c"> </span>la<span class="_ _e"> </span>izquierda<span class="_ _c"> </span>del<span class="_ _c"> </span>1,<span class="_ _c"> </span>y<span class="_ _e"> </span>este<span class="_ _c"> </span>ser´<span class="_ _a"></span>a<span class="_ _e"> </span>el</div><div class="t m0 xb h7 y2b8 ff6 fs3 fc0 sc0 ls0 ws0">v<span class="_ _3"></span>alor<span class="_ _e"> </span>de<span class="_ _f"> </span><span class="ff8">n</span>.</div><div class="t m0 xa h7 y2b9 ff6 fs3 fc0 sc0 ls0 ws0">Ejemplo<span class="_ _c"> </span>Regla<span class="_ _c"> </span>del<span class="_ _c"> </span>97:<span class="_ _c"> </span>97<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>3<span class="_"> </span>=<span class="_"> </span>291<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>29</span></span></span></div><div class="t m0 x86 h7 y2ba ff6 fs3 fc0 sc0 ls0 ws0">Sea<span class="_ _c"> </span>12804:<span class="_ _c"> </span>4<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>29<span class="_"> </span>=<span class="_"> </span>116,<span class="_ _c"> </span>1280<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>116<span class="_"> </span>=<span class="_"> </span>1164,<span class="_ _c"> </span>4<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span></span>29<span class="_"> </span>=<span class="_"> </span>116,<span class="_ _c"> </span>116<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>116<span class="_"> </span>=<span class="_"> </span>0</div><div class="t m0 xa h7 y2bb ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff6">12804<span class="_ _c"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>97</span></span></div><div class="t m0 xcc h7 y2bc ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span>·<span class="_ _1e"> </span>−<span class="_ _1e"> </span>·<span class="_ _1e"> </span>−</div><div class="t m0 xb h7 y2bd ff6 fs3 fc0 sc0 ls0 ws0">7<span class="_ _9"></span><span class="ffa">·<span class="_ _28"></span></span>-<span class="_ _e"> </span>Divisibilidad:<span class="_ _c"> </span>El<span class="_ _e"> </span>n<span class="_ _24"></span>´<span class="_ _d"></span>umero<span class="_ _e"> </span>natural<span class="_ _c"> </span><span class="ff8">n<span class="_ _e"> </span></span>es<span class="_ _c"> </span>un<span class="_ _e"> </span>divisor<span class="_ _c"> </span>del<span class="_ _c"> </span>n<span class="_ _24"></span>´<span class="_ _d"></span>umero<span class="_ _e"> </span>natural<span class="_ _e"> </span><span class="ff8">m<span class="_ _c"> </span></span>si<span class="_ _e"> </span>existe<span class="_ _c"> </span><span class="ff8">x<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N</span></span></span></div><div class="t m0 xb h7 y2be ff6 fs3 fc0 sc0 ls0 ws0">tal<span class="_ _c"> </span>que<span class="_ _c"> </span><span class="ff8">m<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">nx<span class="_ _c"> </span></span>y<span class="_ _c"> </span>se<span class="_ _c"> </span>escrib<span class="_ _24"></span>e<span class="_ _c"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>m<span class="_ _c"> </span></span>o<span class="_ _c"> </span><span class="ff8">m</span></div><div class="t m0 x105 h7 y2bf ff6 fs3 fc0 sc0 ls0 ws0">.</div><div class="t m0 x105 h7 y2c0 ff6 fs3 fc0 sc0 ls0 ws0">.</div><div class="t m0 x105 h7 y2be ff6 fs3 fc0 sc0 ls0 ws0">.<span class="_ _c"> </span><span class="ff8">n</span>.<span class="_ _c"> </span>Se<span class="_ _c"> </span>lee<span class="_ _c"> </span><span class="ff8">n<span class="_ _c"> </span></span>divide<span class="_ _c"> </span>a<span class="_ _c"> </span><span class="ff8">m<span class="_ _f"> </span></span>o<span class="_ _e"> </span><span class="ff8">m<span class="_ _c"> </span></span>es<span class="_ _c"> </span>m<span class="_ _9"></span>´<span class="_ _d"></span>ultiplo<span class="_ _e"> </span>de<span class="_ _c"> </span><span class="ff8">n</span></div><div class="t m0 x41 h7 y2c1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>P<span class="_ _3"></span>ara<span class="_ _c"> </span>to<span class="_ _24"></span>do<span class="_ _c"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">Z</span></span></span></div><div class="t m0 x10 ha y2c2 ff9 fs4 fc0 sc0 ls0 ws0">+</div><div class="t m0 x38 h7 y2c1 ff6 fs3 fc0 sc0 ls0 ws0">;<span class="_ _c"> </span>1<span class="_"> </span><span class="ffa">|<span class="_ _20"> </span><span class="ff8">n<span class="_ _c"> </span></span></span>y<span class="_ _c"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>n</span></div><div class="t m0 x41 h7 y2c3 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>c<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">b<span class="_ _1e"> </span></span>±<span class="_ _1e"> </span><span class="ff8">c</span></span></div><div class="t m0 x41 h7 y2c4 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">bc<span class="_ _c"> </span><span class="ff6">;<span class="_ _c"> </span></span></span>∀<span class="ff8">c<span class="_ _20"> </span></span>∈<span class="_ _20"> </span><span class="ff10">Z</span></span></div><div class="t m0 x41 h7 y2c5 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>c<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">c</span></span></div><div class="t m0 x41 h7 y2c6 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>c<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff6">(<span class="ff8">bx<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">cy<span class="_ _24"></span></span>)<span class="_ _c"> </span></span>∀<span class="ff8">x,<span class="_ _1f"> </span>y<span class="_ _e"> </span></span>∈<span class="_ _20"> </span><span class="ff10">Z</span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf13" class="pf w0 h0" data-page-no="13"><div class="pc pc13 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">16</div><div class="t m0 x41 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>a<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span></span>±<span class="ff8">b</span></span></div><div class="t m0 x41 h7 y2a1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b</span>,<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span>><span class="_ _20"> </span></span>0<span class="_ _c"> </span>,<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span>><span class="_ _20"> </span></span>0<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">b<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 x41 h7 y2c7 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Dado<span class="_ _13"> </span>un<span class="_ _8"> </span>p<span class="_ _24"></span>olinomio<span class="_ _8"> </span><span class="ff8">P<span class="_ _2"> </span></span>=<span class="_ _8"> </span><span class="ff8">p</span></div><div class="t m0 x105 he y2c8 ffd fs4 fc0 sc0 ls0 ws0">α</div><div class="t m0 xcc h11 y2c9 ff11 fs7 fc0 sc0 ls0 ws0">1</div><div class="t m0 x63 h7 y2c7 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _20"> </span><span class="ff8">p</span></div><div class="t m0 xb6 he y2c8 ffd fs4 fc0 sc0 ls0 ws0">α</div><div class="t m0 x55 h11 y2c9 ff11 fs7 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf1 h7 y2c7 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _20"> </span><span class="ff8">p</span></div><div class="t m0 x110 he y2c8 ffd fs4 fc0 sc0 ls0 ws0">α</div><div class="t m0 x3f h11 y2c9 ff11 fs7 fc0 sc0 ls0 ws0">3</div><div class="t m0 xc0 h7 y2c7 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _20"> </span>·<span class="_ _20"> </span>·<span class="_ _20"> </span>·<span class="ff8">p</span></div><div class="t m0 x11c he y2c8 ffd fs4 fc0 sc0 ls0 ws0">α</div><div class="t m0 xf6 h12 y2ca ff12 fs7 fc0 sc0 ls0 ws0">n</div><div class="t m0 x1e h7 y2c7 ff6 fs3 fc0 sc0 ls0 ws0">decimos<span class="_ _8"> </span>que<span class="_ _8"> </span>la<span class="_ _8"> </span>can<span class="_ _12"></span>tidad<span class="_ _8"> </span>de</div><div class="t m0 x5f h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">divisores<span class="_ _c"> </span><span class="ff8">D<span class="_ _f"> </span></span>de<span class="_ _c"> </span><span class="ff8">P<span class="_ _36"> </span></span>es<span class="_ _f"> </span><span class="ff8">D<span class="_ _20"> </span></span>=<span class="_"> </span>(<span class="ff8">α</span></div><div class="t m0 xb9 ha y2cc ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x11d h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>1)(<span class="ff8">α</span></div><div class="t m0 x11e ha y2cc ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x11f h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>1)(<span class="ff8">α</span></div><div class="t m0 x6d ha y2cc ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x66 h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>1)<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span>·<span class="_ _1e"> </span>·<span class="_ _1e"> </span>·</span>(<span class="ff8">α</span></div><div class="t m0 x120 he y2cc ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xdb h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>1)</div><div class="t m0 x41 h7 y2cd ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Sea<span class="_ _e"> </span><span class="ff8">p<span class="_ _c"> </span></span>primo<span class="_ _c"> </span>tal<span class="_ _f"> </span>que<span class="_ _e"> </span><span class="ff8">p<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>ab<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">p<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">a<span class="_ _c"> </span><span class="ff6">o<span class="_ _c"> </span></span>p<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">b</span></span></div><div class="t m0 x41 h7 y2ce ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>T<span class="_ _10"></span>o<span class="_ _24"></span>do<span class="_"> </span>#<span class="_"> </span>primo<span class="_"> </span>may<span class="_ _3"></span>or<span class="_"> </span>que<span class="_"> </span>3<span class="_"> </span>puede<span class="_"> </span>expresarse<span class="_"> </span>como<span class="_"> </span>4<span class="ff8">n<span class="_ _27"></span><span class="ffa">±<span class="_ _27"></span></span></span>1;<span class="_"> </span>6<span class="ff8">k<span class="_ _29"> </span><span class="ffa">±<span class="_ _27"></span></span></span>1<span class="_"> </span>con<span class="_"> </span><span class="ff8">n,<span class="_ _1f"> </span>k<span class="_ _e"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N</span></span></span></div><div class="t m0 x121 h8 y2cf ff7 fs4 fc0 sc0 ls0 ws0">∗</div><div class="t m0 xa h7 y2d0 ff6 fs3 fc0 sc0 ls0 ws0">8<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span><span class="fff">mcd<span class="_ _c"> </span></span>y<span class="_ _f"> </span><span class="fff">mcm</span>.<span class="_ _e"> </span>Conv<span class="_ _3"></span>eniemos<span class="_ _c"> </span>que<span class="_ _c"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)<span class="_"> </span>=<span class="_"> </span><span class="fff">mcd</span>(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)<span class="_ _c"> </span>y<span class="_ _c"> </span>[<span class="ff8">a,<span class="_ _1f"> </span>b</span>]<span class="_"> </span>=<span class="_"> </span><span class="fff">mcm</span>(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)</div><div class="t m0 x41 h7 y2d1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">|<span class="_ _20"> </span></span>c<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff6">(<span class="ff8">b,<span class="_ _1f"> </span>c</span>)</span></span></div><div class="t m0 x41 h7 y2d2 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">ma,<span class="_ _29"> </span>mb</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">m</span>(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)<span class="_ _f"> </span><span class="ffa">∀<span class="ff8">m<span class="_ _21"> </span></span>∈<span class="_ _20"> </span><span class="ff10">Z</span></span></div><div class="t m0 x105 ha y2d3 ff9 fs4 fc0 sc0 ls0 ws0">+</div><div class="t m0 xdd h7 y2d2 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">a,<span class="_ _1f"> </span>b<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N</span></span></span></div><div class="t m0 x41 h7 y2d4 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a,<span class="_ _29"> </span>b</span>)<span class="_"> </span>=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span><span class="ffa">±<span class="_ _1e"> </span></span>b,<span class="_ _1f"> </span>a</span>)<span class="_"> </span>=<span class="_"> </span>(<span class="ff8">b,<span class="_ _1f"> </span>b<span class="_ _1e"> </span><span class="ffa">±<span class="_ _1e"> </span></span>a</span>)</div><div class="t m0 x41 h7 y2d5 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span>(<span class="ff8">m,<span class="_ _1f"> </span>n</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">d<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">m<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>ad,<span class="_ _1f"> </span>n<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>bd<span class="ff6">;<span class="_ _c"> </span></span>a,<span class="_ _1f"> </span>b<span class="_ _20"> </span></span>∈<span class="_ _20"> </span><span class="ff10">Z<span class="ff6">,<span class="_ _c"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)<span class="_"> </span>=<span class="_"> </span>1</span></span></span></div><div class="t m0 x41 h7 y2d6 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a,<span class="_ _29"> </span>b</span>)<span class="_"> </span>=</div><div class="t m0 x46 h9 y2d7 ff8 fs3 fc0 sc0 ls0 ws0">ab</div><div class="t m0 xa6 h7 y2d8 ff6 fs3 fc0 sc0 ls0 ws0">[<span class="ff8">a,<span class="_ _1f"> </span>b</span>]</div><div class="t m0 x36 h7 y2d6 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span>[<span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c</span>]<span class="_"> </span>=</div><div class="t m0 xcf h7 y2d7 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c</span>)<span class="_ _1e"> </span><span class="ffa">·<span class="_ _1e"> </span><span class="ff8">abc</span></span></div><div class="t m0 xdc h7 y2d8 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a,<span class="_ _1f"> </span>b</span>)(<span class="ff8">b,<span class="_ _1f"> </span>c</span>)(<span class="ff8">c,<span class="_ _1f"> </span>a</span>)</div><div class="t m0 xa h7 y2d9 ff6 fs3 fc0 sc0 ls0 ws0">9<span class="_ _27"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _13"> </span>Congruencia:<span class="_ _f"> </span>Sean<span class="_ _f"> </span><span class="ff8">a,<span class="_ _1f"> </span>b<span class="_ _c"> </span><span class="ffa">∈<span class="_ _f"> </span><span class="ff10">Z</span></span></span>,<span class="_ _f"> </span><span class="ff8">m<span class="_ _c"> </span><span class="ffa">∈<span class="_ _f"> </span><span class="ff10">N</span></span></span></div><div class="t m0 x11f h8 y2da ff7 fs4 fc0 sc0 ls0 ws0">∗</div><div class="t m0 x54 h7 y2d9 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _f"> </span><span class="ff6">“<span class="ff8">a</span>”<span class="_ _f"> </span>es<span class="_ _13"> </span>congruen<span class="_ _3"></span>te<span class="_ _f"> </span>con<span class="_ _13"> </span>“<span class="ff8">b</span>”<span class="_ _f"> </span>m´<span class="_ _d"></span>odulo<span class="_ _13"> </span>“<span class="ff8">m</span>”</span></span></div><div class="t m0 xb h7 y2db ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b<span class="_ _e"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _f"> </span><span class="ff8">m</span>))<span class="_ _e"> </span>si<span class="_ _c"> </span><span class="ff8">a<span class="_ _c"> </span></span>y<span class="_ _f"> </span><span class="ff8">b<span class="_ _e"> </span></span>dejan<span class="_ _c"> </span>el<span class="_ _c"> </span>mismo<span class="_ _f"> </span>resto<span class="_ _e"> </span>al<span class="_ _c"> </span>dividirlos<span class="_ _f"> </span>por<span class="_ _c"> </span>“<span class="ff8">m</span>”</div><div class="t m0 x41 h7 y2dc ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">a<span class="_ _21"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)<span class="_"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">b<span class="_ _c"> </span><span class="ff6">es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span></span>m</span></span></div><div class="t m0 x41 h7 y2dd ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c,<span class="_ _1f"> </span>d,<span class="_ _1f"> </span>k<span class="_ _e"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N</span></span></span></div><div class="t m0 x104 h8 y2de ff7 fs4 fc0 sc0 ls0 ws0">∗</div><div class="t m0 x51 h7 y2dd ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N<span class="_ _e"> </span></span></span></span>y<span class="_ _f"> </span><span class="ff8">a<span class="_ _21"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b</span>,<span class="_ _c"> </span><span class="ff8">c<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>d<span class="_ _c"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)<span class="_"> </span>=<span class="_ _4"></span><span class="ffa">⇒</span></div><div class="t m0 x4e h7 y2df ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _16"> </span><span class="ff8">a<span class="_ _33"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>d<span class="ff6">,<span class="_ _c"> </span></span>a<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">c<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">b<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">d<span class="ff6">,<span class="_ _c"> </span></span>ac<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">bd<span class="ff6">,<span class="_ _c"> </span></span>k<span class="_ _24"></span>a<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">k<span class="_ _24"></span>b<span class="_ _c"> </span><span class="ff6">(mo<span class="_ _24"></span>d<span class="_ _c"> </span></span>m<span class="ff6">)</span></span></div><div class="t m0 x4e h7 y2e0 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _16"> </span><span class="ff8">a</span></div><div class="t m0 x80 he y2e1 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8b h7 y2e0 ffa fs3 fc0 sc0 ls0 ws0">≡<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x3 he y2e1 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x122 h7 y2e0 ff6 fs3 fc0 sc0 ls0 ws0">(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)</div><div class="t m0 x4e h7 y2e2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _16"> </span><span class="ff8">a<span class="_ _21"> </span><span class="ff6">:<span class="_"> </span></span>k<span class="_ _e"> </span></span>≡<span class="_ _20"> </span><span class="ff8">b<span class="_ _20"> </span><span class="ff6">:<span class="_"> </span></span>k<span class="_ _f"> </span><span class="ff6">(mo<span class="_ _24"></span>d<span class="_ _c"> </span></span>m<span class="ff6">)<span class="_ _c"> </span>si<span class="_ _c"> </span>(</span>k<span class="_ _9"></span>,<span class="_ _1f"> </span>m<span class="ff6">)<span class="_"> </span>=<span class="_"> </span>1<span class="_ _c"> </span>y<span class="_ _c"> </span></span>a<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>k<span class="_ _24"></span>c<span class="_ _c"> </span><span class="ff6">y<span class="_ _c"> </span></span>b<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>k<span class="_ _24"></span>d</span></div><div class="t m0 x41 h7 y2e3 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">a<span class="_ _21"> </span><span class="ffa">≡<span class="_ _20"> </span></span>a<span class="_ _c"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)</div><div class="t m0 x41 h7 y2e4 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">a<span class="_ _c"> </span><span class="ff6">(mo<span class="_ _24"></span>d<span class="_ _c"> </span></span>m<span class="ff6">)</span></span></span></div><div class="t m0 x41 h7 y2e5 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">b<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>c<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">c<span class="_ _c"> </span><span class="ff6">(mo<span class="_ _24"></span>d<span class="_ _c"> </span></span>m<span class="ff6">)</span></span></span></div><div class="t m0 x41 h7 y2e6 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>b<span class="_ _c"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff6">(<span class="ff8">a,<span class="_ _1f"> </span>m</span>)<span class="_"> </span></span>≡<span class="_ _20"> </span><span class="ff6">(<span class="ff8">b,<span class="_ _1f"> </span>m</span>)<span class="_ _c"> </span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)</span></span></div><div class="t m0 x41 h7 y2e7 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">ax<span class="_ _20"> </span><span class="ffa">≡<span class="_ _20"> </span></span>ay<span class="_ _f"> </span></span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">m</span>)<span class="_ _c"> </span>y<span class="_ _c"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>m</span>)<span class="_"> </span>=<span class="_"> </span>1<span class="_"> </span>=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>≡<span class="_ _20"> </span><span class="ff8">y<span class="_ _f"> </span><span class="ff6">(mod<span class="_ _f"> </span></span>m<span class="ff6">)</span></span></span></div><div class="t m0 xa h7 y2e8 ff6 fs3 fc0 sc0 ls0 ws0">9<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>T<span class="_ _b"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>F<span class="_ _b"></span>ermat:<span class="_ _c"> </span>Sea<span class="_ _c"> </span><span class="ff8">p<span class="_ _c"> </span></span>primo<span class="_ _f"> </span>y<span class="_ _e"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N<span class="_ _20"> </span></span></span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">n</span></span></div><div class="t m0 x123 he y2e9 ffd fs4 fc0 sc0 ls0 ws0">p</div><div class="t m0 x26 h7 y2e8 ffa fs3 fc0 sc0 ls0 ws0">≡<span class="_ _20"> </span><span class="ff8">n<span class="_ _c"> </span><span class="ff6">(mo<span class="_ _24"></span>d<span class="_ _c"> </span></span>p<span class="ff6">)</span></span></div><div class="t m0 x40 h7 y2ea ff6 fs3 fc0 sc0 ls0 ws0">P<span class="_ _3"></span>eque<span class="_ _24"></span>˜<span class="_ _d"></span>no<span class="_ _c"> </span>teorema<span class="_ _c"> </span>de<span class="_ _c"> </span>F<span class="_ _b"></span>ermat:</div><div class="t m0 xc6 h7 y2eb ff6 fs3 fc0 sc0 ls0 ws0">Sea<span class="_ _c"> </span><span class="ff8">p<span class="_ _c"> </span></span>primo,<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">Z</span></span></span></div><div class="t m0 x103 ha y2ec ff9 fs4 fc0 sc0 ls0 ws0">+</div><div class="t m0 x124 h7 y2eb ff6 fs3 fc0 sc0 ls0 ws0">;<span class="_ _c"> </span><span class="ff8">p<span class="_ _20"> </span><span class="ff10">-<span class="_ _20"> </span></span>a<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 x63 ha y2ed ffd fs4 fc0 sc0 ls0 ws0">p<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x125 h7 y2eb ffa fs3 fc0 sc0 ls0 ws0">≡<span class="_ _20"> </span><span class="ff6">1<span class="_ _c"> </span>(mo<span class="_ _24"></span>d<span class="_ _c"> </span><span class="ff8">p</span>)</span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf14" class="pf w0 h0" data-page-no="14"><div class="pc pc14 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">17</div><div class="t m0 x40 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">T<span class="_ _b"></span>eorema<span class="_ _8"> </span>de<span class="_ _36"> </span>Euler:<span class="_ _36"> </span>Sean<span class="_ _36"> </span><span class="ff8">a,<span class="_ _1f"> </span>m<span class="_ _6"> </span><span class="ffa">∈<span class="_ _36"> </span><span class="ff10">N</span></span></span>;<span class="_ _36"> </span>(<span class="ff8">a,<span class="_ _1f"> </span>m</span>)<span class="_ _6"> </span>=<span class="_ _6"> </span>1<span class="_ _36"> </span>=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _36"> </span><span class="ff8">a</span></span></div><div class="t m0 x126 ha y80 ffd fs4 fc0 sc0 ls0 ws0">φ<span class="ff9">(</span>m<span class="ff9">)</span></div><div class="t m0 x127 h7 y9 ffa fs3 fc0 sc0 ls0 ws0">≡<span class="_ _36"> </span><span class="ff6">1<span class="_ _36"> </span>(mo<span class="_ _24"></span>d<span class="_ _36"> </span><span class="ff8">m</span>)<span class="_ _36"> </span>donde</span></div><div class="t m0 xb h7 y81 ff8 fs3 fc0 sc0 ls0 ws0">φ<span class="ff6">(</span>m<span class="ff6">)<span class="_ _c"> </span>es<span class="_ _f"> </span>el<span class="_ _c"> </span>indicador<span class="_ _f"> </span>y<span class="_ _c"> </span>nos<span class="_ _c"> </span>da<span class="_ _f"> </span>la<span class="_ _c"> </span>cantidad<span class="_ _c"> </span>de<span class="_ _c"> </span>#<span class="_ _f"> </span>primos<span class="_ _c"> </span>con<span class="_ _f"> </span></span>m<span class="ff6">,<span class="_ _c"> </span>no<span class="_ _f"> </span>ma<span class="_ _3"></span>yores<span class="_ _e"> </span>que<span class="_ _c"> </span>´<span class="_ _a"></span>el<span class="_ _f"> </span>tal<span class="_ _c"> </span>que</span></div><div class="t m0 xb h7 y2ee ff8 fs3 fc0 sc0 ls0 ws0">φ<span class="ff6">(</span>p<span class="ff6">)<span class="_"> </span>=<span class="_"> </span></span>p<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span><span class="ff6">1<span class="_ _c"> </span>siendo<span class="_ _c"> </span></span></span>p<span class="_ _c"> </span><span class="ff6">primo.</span></div><div class="t m0 xa h7 y2ef ff6 fs3 fc0 sc0 ls0 ws0">11,<span class="_ _c"> </span>12,<span class="_ _c"> </span>13,<span class="_ _c"> </span>...,<span class="_ _c"> </span>pueden<span class="_ _c"> </span>ser<span class="_ _c"> </span>sugerencias<span class="_ _c"> </span>de<span class="_ _f"> </span>los<span class="_ _e"> </span>amigos<span class="_ _c"> </span>lectores.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf15" class="pf w0 h0" data-page-no="15"><div class="pc pc15 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">18</div><div class="t m0 xb h5 yc1 ff1 fs2 fc0 sc0 ls0 ws0">Lecci´<span class="_ _7"></span>on<span class="_ _6"> </span>#6</div><div class="t m0 xa h7 yc2 ff6 fs3 fc0 sc0 ls0 ws0">El<span class="_ _13"> </span>´<span class="_ _d"></span>algebra<span class="_ _13"> </span>es<span class="_ _13"> </span>una<span class="_ _f"> </span>de<span class="_ _13"> </span>las<span class="_ _13"> </span>disciplinas<span class="_ _13"> </span>insigneas<span class="_ _f"> </span>dentro<span class="_ _f"> </span>del<span class="_ _13"> </span>estudio<span class="_ _13"> </span>de<span class="_ _13"> </span>las<span class="_ _f"> </span>matem´<span class="_ _a"></span>aticas.</div><div class="t m0 xb h7 yc3 ff6 fs3 fc0 sc0 ls0 ws0">En<span class="_ _c"> </span>estas<span class="_ _f"> </span>notas<span class="_ _c"> </span>tenemos<span class="_ _c"> </span>en<span class="_ _f"> </span>cuen<span class="_ _3"></span>ta<span class="_ _f"> </span>el<span class="_ _c"> </span>traba<span class="_ _9"></span>jo<span class="_ _f"> </span>con<span class="_ _c"> </span>p<span class="_ _24"></span>olinomios,<span class="_ _f"> </span>ecuaciones,<span class="_ _c"> </span>desigualdades<span class="_ _f"> </span>y</div><div class="t m0 xb h7 yc4 ff6 fs3 fc0 sc0 ls0 ws0">funciones<span class="_ _c"> </span>en<span class="_ _12"></span>tre<span class="_ _c"> </span>tan<span class="_ _12"></span>tas<span class="_ _c"> </span>l<span class="_ _10"></span>´<span class="_ _11"></span>ıneas<span class="_ _c"> </span>que<span class="_ _c"> </span>contempla<span class="_ _e"> </span>este<span class="_ _c"> </span>tema.</div><div class="t m0 xa h7 y151 ff6 fs3 fc0 sc0 ls0 ws0">1<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Pro<span class="_ _24"></span>ductos<span class="_ _c"> </span>Notables:</div><div class="t m0 x7c h7 y2f0 ff6 fs3 fc0 sc0 ls0 ws0">A<span class="_ _c"> </span>los<span class="_ _c"> </span>m´<span class="_ _d"></span>as<span class="_ _f"> </span>conocidos<span class="_ _c"> </span>incorp<span class="_ _24"></span>oramos<span class="_ _f"> </span>estos<span class="_ _e"> </span>de<span class="_ _c"> </span>gran<span class="_ _c"> </span>aplicaci´<span class="_ _a"></span>on</div><div class="t m0 x21 h7 y2f1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a<span class="_ _33"> </span><span class="ffa">±<span class="_ _1e"> </span></span>b</span>)</div><div class="t m0 xc5 ha y2f2 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x32 h7 y2f1 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x34 ha y2f2 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x6a h7 y2f1 ffa fs3 fc0 sc0 ls0 ws0">±<span class="_ _1e"> </span><span class="ff6">3<span class="ff8">a</span></span></div><div class="t m0 xf ha y2f2 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10 h7 y2f1 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span>3</span>ab</div><div class="t m0 x11d h8 y2f2 ff7 fs4 fc0 sc0 ls0 ws0">±</div><div class="t m0 x4a h9 y2f1 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x6 ha y2f2 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x21 h7 y2f3 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a<span class="_ _33"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)</div><div class="t m0 x128 ha y2f4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xab h7 y2f3 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x9d ha y2f4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x13 h7 y2f3 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 xf9 ha y2f4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb5 h7 y2f3 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 x82 ha y2f4 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa0 h7 y2f3 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>2<span class="ff8">ab<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>2<span class="ff8">bc<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>2<span class="ff8">ca</span></div><div class="t m0 x21 h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a<span class="_ _33"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)</div><div class="t m0 x128 ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xab h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x9d ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x13 h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 xf9 ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xb5 h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 x82 ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xa0 h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>3<span class="ff8">a</span></div><div class="t m0 xcc ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7 h7 y2f5 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span>3</span>a</div><div class="t m0 x129 ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12a h7 y2f5 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span>3</span>ab</div><div class="t m0 xbb ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6c h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>3<span class="ff8">b</span></div><div class="t m0 x16 ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x17 h7 y2f5 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span>3</span>ac</div><div class="t m0 x12b ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xc2 h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>3<span class="ff8">bc</span></div><div class="t m0 x12c ha y2f6 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12d h7 y2f5 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>6<span class="ff8">abc</span></div><div class="t m0 x21 h7 y2f7 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>(<span class="ff8">a<span class="_ _33"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)(<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)(<span class="ff8">c<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x12e ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x82 h7 y2f7 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>a</div><div class="t m0 x105 ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x62 h7 y2f7 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ab</div><div class="t m0 xe4 ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x99 h7 y2f7 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x5d ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xfb h7 y2f7 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ac</div><div class="t m0 xaa ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12f h7 y2f7 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">bc</span></div><div class="t m0 xe0 ha y2f8 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xbf h7 y2f7 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>2<span class="ff8">abc</span></div><div class="t m0 xa h7 y2f9 ff6 fs3 fc0 sc0 ls0 ws0">2<span class="_ _3"></span><span class="ffa">·<span class="ff6">-<span class="_"> </span>F<span class="_ _10"></span>actorizaci´<span class="_ _a"></span>on:<span class="_"> </span>Al<span class="_ _21"> </span>factor<span class="_"> </span>com<span class="_ _24"></span>´<span class="_ _d"></span>un,<span class="_"> </span>diferencia<span class="_ _21"> </span>de<span class="_"> </span>cuadrados<span class="_"> </span>y<span class="_"> </span>trinomio<span class="_"> </span>agregamos<span class="_"> </span>otras</span></span></div><div class="t m0 xb h7 y2fa ff6 fs3 fc0 sc0 ls0 ws0">formas...</div><div class="t m0 x21 h7 y2fb ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>F<span class="_ _10"></span>actor<span class="_ _c"> </span>com<span class="_ _24"></span>´<span class="_ _d"></span>un<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>agrupamiento,<span class="_ _e"> </span>ejemplo:</div><div class="t m0 x7c h7 y2fc ff8 fs3 fc0 sc0 ls0 ws0">ab<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ac<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>mb<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>mc<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>a<span class="ff6">(</span>b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c<span class="ff6">)<span class="_ _1e"> </span>+<span class="_ _1e"> </span></span>m<span class="ff6">(</span>b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c<span class="ff6">)<span class="_"> </span>=<span class="_"> </span>(</span>b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c<span class="ff6">)(</span>a<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b<span class="ff6">)</span></div><div class="t m0 x21 h7 y2fd ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Suma<span class="_ _e"> </span>y<span class="_ _c"> </span>Diferencia<span class="_ _c"> </span>de<span class="_ _f"> </span>Cubos</div><div class="t m0 x7c h9 y2fe ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 xb0 ha y2ff ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x42 h7 y2fe ffa fs3 fc0 sc0 ls0 ws0">±<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x85 ha y2ff ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xa5 h7 y2fe ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span><span class="ffa">±<span class="_ _1e"> </span></span>b</span>)(<span class="ff8">a</span></div><div class="t m0 x68 ha y2ff ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf9 h7 y2fe ffa fs3 fc0 sc0 ls0 ws0">∓<span class="_ _1e"> </span><span class="ff8">ab<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b</span></div><div class="t m0 x130 ha y2ff ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xad h7 y2fe ff6 fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 x21 h7 y300 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Otras<span class="_ _e"> </span>sumas</div><div class="t m0 x7c h7 y301 ff6 fs3 fc0 sc0 ls0 ws0">ejemplo<span class="_ _c"> </span>1)<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x46 ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6a h7 y301 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>a</div><div class="t m0 xf4 ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x37 h7 y301 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ab</div><div class="t m0 x82 ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa0 h7 y301 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x131 ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x62 h7 y301 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ac</div><div class="t m0 x125 ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x129 h7 y301 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">bc</span></div><div class="t m0 xfb ha y302 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x132 h7 y301 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>2<span class="ff8">abc</span></div><div class="t m0 x7c h7 y303 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x8f ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4d h7 y303 ff8 fs3 fc0 sc0 ls0 ws0">b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ab</div><div class="t m0 x128 ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x133 h7 y303 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x4 ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3b h7 y303 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>abc<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>abc<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b</div><div class="t m0 x134 ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x98 h7 y303 ff8 fs3 fc0 sc0 ls0 ws0">c<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>ac</div><div class="t m0 xb8 ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3f h7 y303 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">bc</span></div><div class="t m0 x10d ha y304 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h7 y305 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">ab</span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)<span class="_ _1e"> </span>+<span class="_ _1e"> </span><span class="ff8">ac</span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)<span class="_ _1e"> </span>+<span class="_ _1e"> </span><span class="ff8">bc</span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)<span class="_ _1e"> </span>+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 xa1 ha y306 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x56 h7 y305 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)</div><div class="t m0 x7c h7 y307 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)(<span class="ff8">ab<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">ac<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">bc<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 x52 ha y308 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa0 h7 y307 ff6 fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 x7c h7 y309 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)[<span class="ff8">a</span>(<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)<span class="_ _1e"> </span>+<span class="_ _1e"> </span><span class="ff8">c</span>(<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)]</div><div class="t m0 x7c h7 y30a ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span>)(<span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)</div><div class="t m0 x7c h7 y30b ff6 fs3 fc0 sc0 ls0 ws0">ejemplo<span class="_ _c"> </span>2)<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x46 ha y30c ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x119 h7 y30b ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x8d ha y30c ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xae h7 y30b ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 xb5 ha y30c ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x7e h7 y30b ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff6">3<span class="ff8">abc</span></span></div><div class="t m0 x7c h7 y30d ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c</span>)(<span class="ff8">a</span></div><div class="t m0 x47 ha y30e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3b h7 y30d ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x103 ha y30e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x124 h7 y30d ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 xb9 ha y30e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x135 h7 y30d ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff8">ab<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">bc<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">ca<span class="ff6">)<span class="_ _c"> </span>¿p<span class="_ _24"></span>or<span class="_ _c"> </span>qu´<span class="_ _d"></span>e?</span></span></div><div class="t m0 x7c h7 y30f ff6 fs3 fc0 sc0 ls0 ws0">ejemplo<span class="_ _c"> </span>3)<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x46 ha y310 ff9 fs4 fc0 sc0 ls0 ws0">4</div><div class="t m0 x119 h7 y30f ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>4</div><div class="t m0 x7c h7 y311 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x8f ha y312 ff9 fs4 fc0 sc0 ls0 ws0">4</div><div class="t m0 x9b h7 y311 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>4<span class="ff8">a</span></div><div class="t m0 x4f ha y312 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa6 h7 y311 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>4<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>4<span class="ff8">a</span></div><div class="t m0 x103 ha y312 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h7 y313 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a</span></div><div class="t m0 x81 ha y314 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x85 h7 y313 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>2)</div><div class="t m0 x45 ha y314 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x34 h7 y313 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff6">4<span class="ff8">a</span></span></div><div class="t m0 x122 ha y314 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h7 y315 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span>(<span class="ff8">a</span></div><div class="t m0 x81 ha y316 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x85 h7 y315 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span>2<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>2)(<span class="ff8">a</span></div><div class="t m0 x8e ha y316 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x136 h7 y315 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff6">2<span class="ff8">a<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span>2)</span></div><div class="t m0 xa h7 y317 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Polin<span class="_ _12"></span>omios</div><div class="t m0 x21 h7 y318 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>T<span class="_ _10"></span>eorema<span class="_"> </span>del<span class="_"> </span>resto:<span class="_"> </span>Al<span class="_ _1e"> </span>dividir<span class="_"> </span>un<span class="_"> </span>p<span class="_ _24"></span>olinomio<span class="_"> </span>de<span class="_"> </span>grado<span class="_ _1e"> </span><span class="ff8">n<span class="_ _20"> </span></span>p<span class="_ _24"></span>or<span class="_"> </span>un<span class="_"> </span>binomio<span class="_ _21"> </span>de<span class="_"> </span>la<span class="_"> </span>forma</div><div class="t m0 x5f h7 y319 ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">x<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a</span>)<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">P<span class="_ _29"> </span><span class="ff6">(</span>x<span class="ff6">)<span class="_"> </span>=<span class="_"> </span>(</span>x<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">a<span class="ff6">)</span>Q<span class="ff6">(</span>x<span class="ff6">)<span class="_ _1e"> </span>+<span class="_ _1e"> </span></span>R<span class="ff6">,<span class="_ _c"> </span>donde<span class="_ _f"> </span></span>R<span class="_ _c"> </span><span class="ff6">es<span class="_ _c"> </span>un<span class="_ _c"> </span>#<span class="_ _c"> </span>real</span></span></span></div><div class="t m0 x7c h7 y31a ff6 fs3 fc0 sc0 ls0 ws0">Si<span class="_ _e"> </span><span class="ff8">R<span class="_ _20"> </span></span>=<span class="_"> </span>0<span class="_"> </span>=<span class="_ _4"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _33"> </span></span>−<span class="_ _33"></span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _20"> </span><span class="ff8">P<span class="_ _29"> </span><span class="ff6">(</span>x<span class="ff6">)<span class="_ _c"> </span>y<span class="_ _c"> </span>“</span>a<span class="ff6">”<span class="_ _e"> </span>es<span class="_ _c"> </span>un<span class="_ _c"> </span>divisor<span class="_ _e"> </span>del<span class="_ _c"> </span>t´<span class="_ _a"></span>ermino<span class="_ _e"> </span>indep<span class="_ _24"></span>endiente<span class="_ _e"> </span>de<span class="_ _e"> </span><span class="ff8">P<span class="_ _1f"> </span></span>(<span class="ff8">x</span>)</span></span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf16" class="pf w0 h0" data-page-no="16"><div class="pc pc16 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">19</div><div class="t m0 x21 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>T<span class="_ _10"></span>eorema<span class="_ _c"> </span>de<span class="_ _e"> </span>Bezout:<span class="_ _c"> </span>El<span class="_ _c"> </span>resto<span class="_ _c"> </span><span class="ff8">R<span class="_ _c"> </span></span>en<span class="_ _e"> </span>la<span class="_ _c"> </span>nota<span class="_ _c"> </span>an<span class="_ _12"></span>terior<span class="_ _e"> </span>es<span class="_ _c"> </span>igual<span class="_ _c"> </span>al<span class="_ _e"> </span>v<span class="_ _3"></span>alor<span class="_ _c"> </span>de<span class="_ _e"> </span><span class="ff8">P<span class="_ _1f"> </span></span>(<span class="ff8">x</span>)<span class="_ _e"> </span>para</div><div class="t m0 x5f h7 y81 ff8 fs3 fc0 sc0 ls0 ws0">x<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>a<span class="ff6">,<span class="_ _c"> </span>o<span class="_ _c"> </span>sea<span class="_ _c"> </span></span>R<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span></span>P<span class="_ _29"> </span><span class="ff6">(</span>a<span class="ff6">).<span class="_ _c"> </span>V<span class="_ _b"></span>er<span class="_ _f"> </span>regla<span class="_ _e"> </span>de<span class="_ _c"> </span>Ruffini</span></div><div class="t m0 x21 h7 y2a2 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">P<span class="_ _27"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">x</span></div><div class="t m0 x80 he y31b ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8b h7 y2a2 ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x2f he y31b ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x122 h7 y2a2 ff6 fs3 fc0 sc0 ls0 ws0">siempre<span class="_ _c"> </span>es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>(<span class="ff8">x<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>a</span>),<span class="_ _c"> </span><span class="ff8">n<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">N</span></span></span></div><div class="t m0 x21 h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">P<span class="_ _27"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">x</span></div><div class="t m0 x80 he y31c ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8b h7 y2cb ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x2f he y31c ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x122 h7 y2cb ff6 fs3 fc0 sc0 ls0 ws0">es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>(<span class="ff8">x<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span>),<span class="_ _c"> </span>si<span class="_ _c"> </span><span class="ff8">n<span class="_ _c"> </span></span>es<span class="_ _c"> </span>par</div><div class="t m0 x21 h7 y2cd ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">P<span class="_ _27"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">x</span></div><div class="t m0 x80 he y31d ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x8b h7 y2cd ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x2f he y31d ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x122 h7 y2cd ff6 fs3 fc0 sc0 ls0 ws0">es<span class="_ _c"> </span>divisible<span class="_ _c"> </span>p<span class="_ _24"></span>or<span class="_ _c"> </span>(<span class="ff8">x<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span>),<span class="_ _c"> </span>si<span class="_ _c"> </span><span class="ff8">n<span class="_ _c"> </span></span>es<span class="_ _c"> </span>impar</div><div class="t m0 x21 h7 y31e ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Un<span class="_ _e"> </span>#<span class="_ _c"> </span><span class="ff8">x</span></div><div class="t m0 x9c ha y31f ff9 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 xaf h7 y31e ff6 fs3 fc0 sc0 ls0 ws0">es<span class="_ _c"> </span>la<span class="_ _c"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ız<span class="_ _c"> </span>de<span class="_ _c"> </span><span class="ff8">P<span class="_ _29"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">x</span></span></div><div class="t m0 xb7 ha y31f ff9 fs4 fc0 sc0 ls0 ws0">0</div><div class="t m0 x12a h7 y31e ffa fs3 fc0 sc0 ls0 ws0">|<span class="_ _20"> </span><span class="ff8">P<span class="_ _29"> </span><span class="ff6">(</span>x<span class="ff6">)</span></span></div><div class="t m0 x21 h7 y320 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>T<span class="_ _10"></span>eorema<span class="_ _c"> </span>de<span class="_ _c"> </span>Vieta</div><div class="t m0 x7c h7 y2a8 ff6 fs3 fc0 sc0 ls0 ws0">Sea<span class="_ _c"> </span><span class="ff8">P<span class="_ _29"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">x</span></div><div class="t m0 x6a he y321 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x47 h7 y2a8 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 xae ha y322 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x104 h9 y2a8 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x51 ha y321 ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x137 h7 y2a8 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 xdc ha y322 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x84 h9 y2a8 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x9 ha y321 ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">2</span></span></div><div class="t m0 x138 h7 y2a8 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x139 ha y322 ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x123 h7 y2a8 ff8 fs3 fc0 sc0 ls0 ws0">x<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>a</div><div class="t m0 x13a he y322 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7c h7 y323 ff6 fs3 fc0 sc0 ls0 ws0">con<span class="_ _c"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ıces<span class="_ _c"> </span><span class="ff8">x</span></div><div class="t m0 x34 ha y324 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa7 h9 y323 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>x</div><div class="t m0 x6b ha y324 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x13b h9 y323 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>...,<span class="_ _1f"> </span>x</div><div class="t m0 x124 he y324 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13c h7 y323 ff6 fs3 fc0 sc0 ls0 ws0">cumple<span class="_ _c"> </span>con:</div><div class="t m0 x7c h9 y325 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xb0 ha y326 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x42 h7 y325 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 xbd ha y326 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x13d h7 y325 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x13b ha y326 ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x9e h7 y325 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 xf0 he y326 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13e h7 y325 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ffa">−<span class="ff8">a</span></span></div><div class="t m0 x13f ha y326 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x7c h9 y327 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xb0 ha y328 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x31 h9 y327 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8f ha y328 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9b h7 y327 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x44 ha y328 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4f h9 y327 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8b ha y328 ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x46 h7 y327 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x51 ha y328 ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x12e h9 y327 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x82 he y328 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x83 h7 y327 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x13f ha y328 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xb0 ha y32a ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x31 h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8f ha y32a ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4d h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x140 ha y32a ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xf7 h7 y329 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x8b ha y32a ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x34 h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x20 ha y32a ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2f h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x4 ha y32a ff9 fs4 fc0 sc0 ls0 ws0">4</div><div class="t m0 x8d h7 y329 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x82 ha y32a ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">2</span></span></div><div class="t m0 x6 h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x131 ha y32a ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff7">−<span class="ff9">1</span></span></div><div class="t m0 x141 h9 y329 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x3e he y32a ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x55 h7 y329 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ffa">−<span class="ff8">a</span></span></div><div class="t m0 x5d ha y32a ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 x7c h7 y32b ffa fs3 fc0 sc0 ls0 ws0">·</div><div class="t m0 x7c h7 y32c ffa fs3 fc0 sc0 ls0 ws0">·</div><div class="t m0 x7c h7 y32d ffa fs3 fc0 sc0 ls0 ws0">·</div><div class="t m0 x7c h9 y32e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xb0 ha y32f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x31 h9 y32e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x8f ha y32f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4d h9 y32e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x140 ha y32f ff9 fs4 fc0 sc0 ls0 ws0">3</div><div class="t m0 xf7 h7 y32e ffa fs3 fc0 sc0 ls0 ws0">·<span class="_ _1e"> </span>·<span class="_ _1e"> </span>·<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x133 he y32f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x119 h7 y32e ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ffa">−<span class="ff8">a</span></span></div><div class="t m0 x10 he y32f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x3c h7 y32e ff6 fs3 fc0 sc0 ls0 ws0">(si<span class="_ _c"> </span><span class="ff8">n<span class="_ _c"> </span></span>es<span class="_ _c"> </span>impar)</div><div class="t m0 x119 h7 y330 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x8e he y331 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x124 h7 y330 ff6 fs3 fc0 sc0 ls0 ws0">(si<span class="_ _c"> </span><span class="ff8">n<span class="_ _c"> </span></span>es<span class="_ _c"> </span>par)</div><div class="t m0 x7c h7 y332 ff6 fs3 fc0 sc0 ls0 ws0">En<span class="_ _c"> </span>particular<span class="_ _c"> </span><span class="ff8">P<span class="_ _29"> </span></span>(<span class="ff8">x</span>)<span class="_"> </span>=<span class="_"> </span><span class="ff8">x</span></div><div class="t m0 x13c ha y333 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x137 h7 y332 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">px<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">q<span class="_ _e"> </span></span>=<span class="_"> </span>(<span class="ff8">x<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>x</span></div><div class="t m0 x139 ha y334 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xcb h7 y332 ff6 fs3 fc0 sc0 ls0 ws0">)(<span class="ff8">x<span class="_ _1e"> </span><span class="ffa">−<span class="_ _1e"> </span></span>x</span></div><div class="t m0 xd7 ha y334 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xef h7 y332 ff6 fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 x4 h9 y335 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xe3 ha y336 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf4 h7 y335 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 xb5 ha y336 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7e h7 y335 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ffa">−<span class="ff8">p<span class="_ _c"> </span></span></span>y<span class="_ _c"> </span><span class="ff8">x</span></div><div class="t m0 x11e ha y336 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x142 h9 y335 ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 xcd ha y336 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x15 h7 y335 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">q</span></div><div class="t m0 x7c h7 y337 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span>en<span class="_ _c"> </span><span class="ff8">ax</span></div><div class="t m0 x69 ha y338 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x12 h7 y337 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">bx<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">c<span class="_ _20"> </span></span>=<span class="_"> </span>0<span class="_ _c"> </span>la<span class="_ _c"> </span>ecuaci´<span class="_ _d"></span>on<span class="_ _c"> </span>tiene<span class="_ _f"> </span>2<span class="_ _e"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ıces<span class="_ _c"> </span>reales<span class="_ _c"> </span>si<span class="_ _f"> </span><span class="ff8">D<span class="_ _20"> </span>><span class="_ _20"> </span></span>0</div><div class="t m0 x98 h7 y339 ff6 fs3 fc0 sc0 ls0 ws0">no<span class="_ _c"> </span>tiene<span class="_ _c"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ıces<span class="_ _c"> </span>reales<span class="_ _c"> </span>si<span class="_ _c"> </span><span class="ff8">D<span class="_ _e"> </span><<span class="_ _20"> </span></span>0</div><div class="t m0 x98 h7 y33a ff6 fs3 fc0 sc0 ls0 ws0">tiene<span class="_ _c"> </span>una<span class="_ _c"> </span>sola<span class="_ _c"> </span>ra<span class="_ _10"></span>´<span class="_ _11"></span>ız<span class="_ _c"> </span>si<span class="_ _c"> </span><span class="ff8">D<span class="_ _e"> </span></span>=<span class="_"> </span>0</div><div class="t m0 x7c h7 y2de ff8 fs3 fc0 sc0 ls0 ws0">D<span class="_ _e"> </span><span class="ff6">=<span class="_"> </span></span>b</div><div class="t m0 x140 ha y33b ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x69 h7 y2de ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span><span class="ff6">4<span class="ff8">ac<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">x</span></span></div><div class="t m0 x8d ha y33c ff9 fs4 fc0 sc0 ls0 ws0">1<span class="ffd">,</span>2</div><div class="t m0 x9e h7 y2de ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xd0 h7 y33d ffa fs3 fc0 sc0 ls0 ws0">−<span class="ff8">b<span class="_ _1e"> </span></span>±</div><div class="t m0 xdc h7 y33e ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x131 h9 y33d ff8 fs3 fc0 sc0 ls0 ws0">D</div><div class="t m0 x11d h7 y33f ff6 fs3 fc0 sc0 ls0 ws0">2<span class="ff8">a</span></div><div class="t m0 xa h7 y340 ff6 fs3 fc0 sc0 ls0 ws0">3<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Desigualdades.<span class="_ _c"> </span>Si<span class="_ _c"> </span><span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c<span class="_ _20"> </span><span class="ffa">∈<span class="_ _20"> </span><span class="ff10">R</span></span></span></div><div class="t m0 x21 h7 y341 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><<span class="_ _20"> </span>b<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a<span class="_ _1e"> </span></span>±<span class="_ _1e"> </span><span class="ff8">c<span class="_ _20"> </span><<span class="_ _20"> </span>b<span class="_ _1e"> </span></span>±<span class="_ _1e"> </span><span class="ff8">c</span></span></div><div class="t m0 x21 h7 y342 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span>0<span class="_"> </span><span class="ff8"><<span class="_ _20"> </span>a<span class="_ _20"> </span><<span class="_ _20"> </span>b<span class="_ _20"> </span></span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 xf he y343 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x48 h9 y342 ff8 fs3 fc0 sc0 ls0 ws0"><<span class="_ _20"> </span>b</div><div class="t m0 x13c he y343 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x21 h7 y344 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">a<span class="_ _21"> </span><<span class="_ _20"> </span>b<span class="_ _20"> </span><<span class="_ _20"> </span></span>0<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 x4 he y345 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13 h9 y344 ff8 fs3 fc0 sc0 ls0 ws0"><<span class="_ _20"> </span>b</div><div class="t m0 x51 he y345 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xb4 h7 y344 ffa fs3 fc0 sc0 ls0 ws0">⇐<span class="_ _2a"></span>⇒<span class="_ _20"> </span><span class="ff8">n<span class="_ _c"> </span><span class="ff6">es<span class="_ _c"> </span>impar</span></span></div><div class="t m0 x21 h7 y346 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><<span class="_ _20"> </span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">c<span class="_ _20"> </span>><span class="_ _20"> </span></span>0<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">ac<span class="_ _20"> </span><<span class="_ _20"> </span>bc</span></span></div><div class="t m0 x21 h7 y347 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>si<span class="_ _e"> </span><span class="ff8">a<span class="_ _20"> </span><<span class="_ _20"> </span>b<span class="_ _c"> </span></span>y<span class="_ _c"> </span><span class="ff8">c<span class="_ _20"> </span><<span class="_ _20"> </span></span>0<span class="_"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">ac<span class="_ _20"> </span>><span class="_ _20"> </span>bc</span></span></div><div class="t m0 x21 h7 y348 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ff8">a</span></div><div class="t m0 xb0 ha y349 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x143 h7 y348 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff6">0</span></div><div class="t m0 x21 h7 y34a ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a,<span class="_ _1f"> </span>b<span class="_ _c"> </span></span>tienen<span class="_ _c"> </span>suma<span class="_ _f"> </span>constan<span class="_ _3"></span>te<span class="_ _c"> </span>=<span class="_ _2a"></span><span class="ffa">⇒<span class="_ _20"> </span><span class="ff8">ab<span class="_ _c"> </span><span class="ff6">es<span class="_ _c"> </span>m´<span class="_ _a"></span>aximo<span class="_ _c"> </span>si<span class="_ _c"> </span><span class="ff8">a<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">b</span></span></span></span></div><div class="t m0 xcc h7 y34b ffa fs3 fc0 sc0 ls0 ws0">−<span class="_ _1e"> </span>·<span class="_ _1e"> </span>−<span class="_ _1e"> </span>·<span class="_ _1e"> </span>−</div><div class="t m0 x21 h7 y34c ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x<span class="_ _20"> </span></span>|<span class="_ _c"> </span>≥<span class="_ _20"> </span></span>0<span class="_ _c"> </span>con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>0</span></span></span></div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf17" class="pf w0 h0" data-page-no="17"><div class="pc pc17 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">20</div><div class="t m0 x21 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x<span class="_ _20"> </span></span>|<span class="_ _c"> </span>≥<span class="_ _20"> </span><span class="ff8">x<span class="_ _c"> </span></span></span>con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff6">0</span></span></div><div class="t m0 x21 h7 y2a1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x<span class="_ _20"> </span></span>|<span class="_ _c"> </span></span>=<span class="_ _c"> </span><span class="ffa">|<span class="_ _20"> </span>−<span class="ff8">x<span class="_ _20"> </span></span>|</span></div><div class="t m0 x21 h7 y2c7 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">xy<span class="_ _c"> </span></span>|<span class="_ _c"> </span></span>=<span class="_ _c"> </span><span class="ffa">|<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>||<span class="_ _20"> </span><span class="ff8">y<span class="_ _e"> </span></span>|</span></div><div class="t m0 x21 h7 y34d ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x<span class="_ _20"> </span></span>|<span class="_ _c"> </span>≤<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>⇐<span class="_ _2a"></span>⇒<span class="_ _20"> </span>−<span class="ff8">a<span class="_ _20"> </span></span>≤<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>≤<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 x21 h7 y34e ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x<span class="_ _20"> </span></span>|<span class="_ _c"> </span>≥<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>⇐<span class="_ _2a"></span>⇒<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">a<span class="_ _c"> </span><span class="ff6">o<span class="_ _c"> </span></span>x<span class="_ _20"> </span></span>≤<span class="_ _20"> </span>−<span class="ff8">a</span></span></div><div class="t m0 x21 h7 y34f ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">x</span></span></div><div class="t m0 x42 ha y350 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x106 h7 y34f ffa fs3 fc0 sc0 ls0 ws0">|<span class="_ _c"> </span><span class="ff6">=<span class="_ _c"> </span></span>|<span class="_ _20"> </span><span class="ff8">x<span class="_ _20"> </span></span>|</div><div class="t m0 x34 ha y350 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xac h7 y34f ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _c"> </span><span class="ff8">x</span></div><div class="t m0 x8e ha y350 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x21 h7 y351 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">a<span class="_ _1e"> </span></span></span>+<span class="_ _1e"> </span><span class="ff8">b<span class="_ _20"> </span><span class="ffa">|<span class="_ _c"> </span>≤<span class="_ _c"> </span>|<span class="_ _20"> </span></span>a<span class="_ _20"> </span><span class="ffa">|<span class="_ _c"> </span></span></span>+<span class="_ _c"> </span><span class="ffa">|<span class="_ _20"> </span><span class="ff8">b<span class="_ _20"> </span></span>|<span class="_ _c"> </span></span>con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">ab<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>0</span></span></span></div><div class="t m0 x21 h7 y352 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span><span class="ffa">|<span class="_ _21"> </span><span class="ff8">a<span class="_ _1e"> </span></span>−<span class="_ _1e"> </span><span class="ff8">b<span class="_ _20"> </span></span>|<span class="_ _c"> </span>≥<span class="_ _c"> </span>|<span class="_ _20"> </span><span class="ff8">a<span class="_ _20"> </span></span>|<span class="_ _c"> </span>−<span class="_ _c"> </span>|<span class="_ _20"> </span><span class="ff8">b<span class="_ _20"> </span></span>|<span class="_ _c"> </span></span>con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _4"></span>⇒<span class="_ _20"> </span><span class="ff8">ab<span class="_ _20"> </span><span class="ff6">=<span class="_"> </span>0</span></span></span></div><div class="t m0 xa h7 y353 ff6 fs3 fc0 sc0 ls0 ws0">4<span class="_ _28"></span><span class="ffa">·<span class="_ _27"></span></span>-<span class="_ _c"> </span>Desigualdades<span class="_ _c"> </span>Notables</div><div class="t m0 x21 h7 y354 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Relaci´<span class="_ _d"></span>on<span class="_ _c"> </span>entre<span class="_ _e"> </span>las<span class="_ _c"> </span>medias:<span class="_ _c"> </span><span class="ff8">R<span class="_ _20"> </span><span class="ffa">≥<span class="_ _20"> </span></span>A<span class="_ _20"> </span><span class="ffa">≥<span class="_ _20"> </span></span>g<span class="_ _e"> </span><span class="ffa">≥<span class="_ _20"> </span></span>H<span class="_ _28"></span></span>,<span class="_ _c"> </span>o<span class="_ _c"> </span>sea,</div><div class="t m0 x7c hb y355 ffb fs3 fc0 sc0 ls0 ws0">r</div><div class="t m0 x144 h9 y356 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 xa3 ha y357 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa3 ha y358 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe2 h7 y356 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x44 ha y357 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x44 ha y358 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x45 h7 y356 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...a</span></div><div class="t m0 x4 ha y357 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x4 he y359 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x12 h9 y35a ff8 fs3 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7e h7 y35b ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x105 he y35c ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xcf hb y35d ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xad ha y35e ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x63 h9 y356 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x98 he y35f ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x134 h9 y35a ff8 fs3 fc0 sc0 ls0 ws0">n</div><div class="t m0 x56 h7 y35b ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x132 h12 y360 ff12 fs7 fc0 sc0 ls0 ws0">n</div><div class="t m0 xcb hb y361 ffb fs3 fc0 sc0 ls0 ws0">s</div><div class="t m0 x59 he y35c ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xbb hb y35d ffb fs3 fc0 sc0 ls0 ws0">Q</div><div class="t m0 x10d ha y35e ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 xc4 h9 y362 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x12f he y363 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xdb h7 y362 ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x116 h9 y356 ff8 fs3 fc0 sc0 ls0 ws0">n</div><div class="t m0 x111 he y364 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xea hb y365 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 xea ha y366 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=</span>i</div><div class="t m0 x145 h7 y367 ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 xfd h9 y368 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x28 he y369 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7c h7 y36a ff6 fs3 fc0 sc0 ls0 ws0">Ra<span class="_ _10"></span>´<span class="_ _11"></span>ız<span class="_ _c"> </span>cuadrada<span class="_ _c"> </span>de<span class="_ _c"> </span>la<span class="_ _3c"> </span><span class="ffa">≥<span class="_ _3b"> </span></span>Media<span class="_ _3c"> </span><span class="ffa">≥<span class="_ _3c"> </span></span>Media<span class="_ _3b"> </span><span class="ffa">≥<span class="_ _3c"> </span></span>Media</div><div class="t m0 xd1 h7 y36b ff6 fs3 fc0 sc0 ls0 ws0">media<span class="_ _c"> </span>aritm<span class="_ _12"></span>´<span class="_ _a"></span>etica<span class="_ _3d"> </span>aritm<span class="_ _3"></span>´<span class="_ _25"></span>etica<span class="_ _3e"> </span>geom<span class="_ _3"></span>´<span class="_ _25"></span>etrica<span class="_ _3f"> </span>arm´<span class="_ _d"></span>onica</div><div class="t m0 xc5 h7 y36c ff6 fs3 fc0 sc0 ls0 ws0">de<span class="_ _c"> </span>los<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x2f he y36d ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x7c h7 y36e ff6 fs3 fc0 sc0 ls0 ws0">siendo<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x32 ha y36f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x80 h9 y36e ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>a</div><div class="t m0 x5b ha y36f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x46 h9 y36e ff8 fs3 fc0 sc0 ls0 ws0">...a</div><div class="t m0 x4 he y36f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x13 h7 y36e ff8 fs3 fc0 sc0 ls0 ws0">><span class="_ _20"> </span><span class="ff6">0</span></div><div class="t m0 x7c h7 y370 ff6 fs3 fc0 sc0 ls0 ws0">Con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _2a"></span>⇒<span class="_ _20"> </span><span class="ff8">a</span></span></div><div class="t m0 x6a ha y371 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xf8 h7 y370 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 xae ha y371 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9e h7 y370 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">...<span class="_ _20"> </span></span>=<span class="_"> </span><span class="ff8">a</span></div><div class="t m0 x6 he y371 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7c h7 y372 ff6 fs3 fc0 sc0 ls0 ws0">En<span class="_ _c"> </span>particular</div><div class="t m0 x7c h7 y373 ff6 fs3 fc0 sc0 ls0 ws0">para<span class="_ _c"> </span><span class="ff8">a,<span class="_ _1f"> </span>b,<span class="_ _1f"> </span>c<span class="_ _20"> </span>><span class="_ _20"> </span></span>0:</div><div class="t m0 x9d hb y374 ffb fs3 fc0 sc0 ls0 ws0">r</div><div class="t m0 xf4 h9 y375 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x104 ha y376 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3c h7 y375 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x146 ha y376 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x135 h7 y375 ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">c</span></div><div class="t m0 x84 ha y376 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x147 h7 y377 ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 x62 h7 y373 ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x148 h7 y375 ff8 fs3 fc0 sc0 ls0 ws0">a<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>b<span class="_ _1e"> </span><span class="ff6">+<span class="_ _1e"> </span></span>c</div><div class="t m0 x72 h7 y377 ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 xc0 h7 y373 ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x123 h11 y378 ff11 fs7 fc0 sc0 ls0 ws0">3</div><div class="t m0 x10d h7 y379 ffa fs3 fc0 sc0 ls0 ws0">√</div><div class="t m0 x26 h7 y373 ff8 fs3 fc0 sc0 ls0 ws0">abc<span class="_ _20"> </span><span class="ffa">≥</span></div><div class="t m0 x127 h7 y375 ff6 fs3 fc0 sc0 ls0 ws0">3</div><div class="t m0 xe0 h7 y37a ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 xe0 h9 y37b ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x113 h7 y37c ff6 fs3 fc0 sc0 ls0 ws0">+</div><div class="t m0 x127 h7 y37a ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x127 h9 y37b ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xea h7 y37c ff6 fs3 fc0 sc0 ls0 ws0">+</div><div class="t m0 x1b h7 y37a ff6 fs3 fc0 sc0 ls0 ws0">1</div><div class="t m0 x1b h9 y37b ff8 fs3 fc0 sc0 ls0 ws0">c</div><div class="t m0 x21 h7 y37d ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Cauc<span class="_ _3"></span>hy<span class="_ _e"> </span>Sch<span class="_ _3"></span>w<span class="_ _3"></span>artz</div><div class="t m0 x7c h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a</span></div><div class="t m0 xd1 ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xd1 ha y380 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x8f h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 xa8 ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xa8 ha y380 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x2d h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x36 ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x36 he y381 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x149 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">)(<span class="ff8">b</span></div><div class="t m0 xe7 ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xe7 ha y380 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x49 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x82 ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x82 ha y380 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x39 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">b</span></div><div class="t m0 x3e ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3e he y381 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x54 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">)<span class="_"> </span><span class="ffa">≥<span class="_ _20"> </span></span>(<span class="ff8">a</span></div><div class="t m0 x5d ha y382 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x109 h9 y37e ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x57 ha y382 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa9 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x11c ha y382 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10b h9 y37e ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xd7 ha y382 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x16 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x12b he y382 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x111 h9 y37e ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x116 he y382 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xc3 h7 y37e ff6 fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 xee ha y37f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x7c h7 y383 ff6 fs3 fc0 sc0 ls0 ws0">siendo<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x32 ha y384 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x80 h9 y383 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>a</div><div class="t m0 x5b ha y384 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x46 h9 y383 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>...,<span class="_ _1f"> </span>a</div><div class="t m0 x8e he y384 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xae h9 y383 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>b</div><div class="t m0 xe7 ha y384 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xb2 h9 y383 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>b</div><div class="t m0 xf0 ha y384 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xb9 h9 y383 ff8 fs3 fc0 sc0 ls0 ws0">...,<span class="_ _1f"> </span>b</div><div class="t m0 x130 he y384 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x105 h7 y383 ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R</span></div><div class="t m0 x7c h7 y385 ff6 fs3 fc0 sc0 ls0 ws0">Con<span class="_ _c"> </span>=<span class="_ _c"> </span><span class="ffa">⇐<span class="_ _2a"></span>⇒</span></div><div class="t m0 x46 h9 y386 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 xac ha y387 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x2e h9 y388 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x6a ha y389 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x4 h7 y385 ff6 fs3 fc0 sc0 ls0 ws0">=</div><div class="t m0 xf h9 y386 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x37 ha y387 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf h9 y388 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x10 ha y389 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x3c h7 y385 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_"> </span><span class="ff8">...<span class="_ _20"> </span></span>=</div><div class="t m0 x6 h9 y386 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x131 he y387 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x53 h9 y388 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x14a he y389 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7c h7 y38a ff6 fs3 fc0 sc0 ls0 ws0">Adem´<span class="_ _d"></span>as<span class="_ _c"> </span>se<span class="_ _c"> </span>cumple:</div><div class="t m0 x9e h9 y38b ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x124 ha y38c ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x124 ha y38d ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x9e h9 y38e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x38 ha y38f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xb3 h7 y38a ff6 fs3 fc0 sc0 ls0 ws0">+</div><div class="t m0 x52 h9 y38b ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x39 ha y38c ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x39 ha y38d ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14b h9 y38e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x39 ha y38f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x6 h7 y38a ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+</div><div class="t m0 x54 h9 y38b ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 xe4 ha y38c ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xe4 he y390 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x54 h9 y38e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x14c he y38f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x56 h7 y38a ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x5d h7 y38b ff6 fs3 fc0 sc0 ls0 ws0">(<span class="ff8">a</span></div><div class="t m0 x57 ha y391 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 xa9 h7 y38b ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x11c ha y391 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14d h7 y38b ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">a</span></div><div class="t m0 x19 he y391 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x91 h7 y38b ff6 fs3 fc0 sc0 ls0 ws0">)</div><div class="t m0 x14e ha y38c ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x14f h9 y38e ff8 fs3 fc0 sc0 ls0 ws0">x</div><div class="t m0 x58 ha y38f ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x10d h7 y38e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x10e ha y38f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x10f h7 y38e ff6 fs3 fc0 sc0 ls0 ws0">+<span class="_ _1e"> </span><span class="ff8">...<span class="_ _1e"> </span></span>+<span class="_ _1e"> </span><span class="ff8">x</span></div><div class="t m0 x150 he y38f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x7c h7 y392 ff6 fs3 fc0 sc0 ls0 ws0">siendo<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x32 ha y393 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x80 h9 y392 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>a</div><div class="t m0 x5b ha y393 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x46 h9 y392 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>...a</div><div class="t m0 x3b he y393 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xf h7 y392 ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R<span class="_ _c"> </span><span class="ff6">y<span class="_ _c"> </span><span class="ff8">x</span></span></span></div><div class="t m0 x135 ha y393 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x151 h9 y392 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>x</div><div class="t m0 xad ha y393 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x9 h9 y392 ff8 fs3 fc0 sc0 ls0 ws0">,<span class="_ _1f"> </span>...,<span class="_ _1f"> </span>x</div><div class="t m0 x71 he y393 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x152 h7 y392 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff6">0</span></div><div class="t m0 x7c h7 y394 ff6 fs3 fc0 sc0 ls0 ws0">Esta<span class="_ _c"> </span>forma<span class="_ _c"> </span>es<span class="_ _c"> </span>muy<span class="_ _e"> </span>“atractiv<span class="_ _3"></span>a”<span class="_ _c"> </span>y<span class="_ _c"> </span>se<span class="_ _c"> </span>cono<span class="_ _24"></span>ce<span class="_ _c"> </span>como<span class="_ _c"> </span>Desigualdad<span class="_ _c"> </span>de<span class="_ _f"> </span>Arth<span class="_ _3"></span>ur<span class="_ _c"> </span>Engels</div><div class="t m0 x21 h7 y395 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Reacomodo</div><div class="t m0 xc6 he y396 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x22 hb y397 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x7c ha y398 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x2b h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x81 he y39a ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x153 h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x85 he y39a ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x69 h7 y399 ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 x154 he y396 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x79 hb y397 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x33 ha y398 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 xb1 h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x2f he y39b ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x47 h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xf2 he y39b ffd fs4 fc0 sc0 ls0 ws0">γ</div><div class="t m0 xe3 h12 y39c ff12 fs7 fc0 sc0 ls0 ws0">i</div><div class="t m0 xf h7 y399 ffa fs3 fc0 sc0 ls0 ws0">≥</div><div class="t m0 xb2 he y396 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xf3 hb y397 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x51 ha y398 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x155 h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x156 he y39b ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x52 h9 y399 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x39 ha y39b ffd fs4 fc0 sc0 ls0 ws0">n<span class="ff9">+1<span class="ff7">−</span></span>i</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
<div id="pf18" class="pf w0 h0" data-page-no="18"><div class="pc pc18 w0 h0"><img class="bi x0 y0 w1 h1" alt="" src=""/><div class="t m0 xe1 h7 y8 ff6 fs3 fc0 sc0 ls0 ws0">21</div><div class="t m0 x7c h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">con<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 xe2 he y19f ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xc5 h7 y9 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 x45 ha y19f ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x34 h7 y9 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 xe7 he y19f ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 xb2 h7 y9 ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 x12e he y19f ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x14b h7 y9 ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R</span></div><div class="t m0 x7c h9 y39d ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xc6 he y39e ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x31 h7 y39d ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x7a ha y39e ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 xf7 h7 y39d ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x157 he y39e ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x36 h7 y39d ff6 fs3 fc0 sc0 ls0 ws0">,<span class="_ _c"> </span><span class="ff8">b</span></div><div class="t m0 x10 he y39e ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xe7 h7 y39d ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R</span></div><div class="t m0 x7c h7 y39f ff8 fs3 fc0 sc0 ls0 ws0">γ<span class="_ _c"> </span><span class="ff6">=<span class="_"> </span><span class="ffa">{</span>1</span>,<span class="_ _1f"> </span><span class="ff6">2</span>,<span class="_ _1f"> </span>...n<span class="ffa">}<span class="_ _c"> </span><span class="ff6">cualquier<span class="_ _c"> </span>p<span class="_ _24"></span>ermutaci<span class="_ _4"></span>´<span class="_ _11"></span>ın<span class="_ _f"> </span>de<span class="_ _e"> </span><span class="ff8">a</span></span></span></div><div class="t m0 x3f he y3a0 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x66 h7 y39f ff6 fs3 fc0 sc0 ls0 ws0">,<span class="ff8">b</span></div><div class="t m0 x57 he y3a0 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x21 h7 y3a1 ff6 fs3 fc0 sc0 ls0 ws0">-<span class="_ _16"> </span>Sheb<span class="_ _3"></span>ychev</div><div class="t m0 x144 h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">·<span class="ff6">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a</span></span></div><div class="t m0 x12 ha y3a3 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x128 h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 x158 ha y3a3 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x157 h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 x12e he y3a3 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x11d h7 y3a2 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">b</span></div><div class="t m0 x84 ha y3a3 ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x13f h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x98 ha y3a3 ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x71 h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x159 he y3a3 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x10d h7 y3a2 ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R</span></div><div class="t m0 xa5 h7 y3a4 ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒</span></div><div class="t m0 xa7 he y3a5 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x133 hb y3a6 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x34 ha y3a7 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x47 h9 y3a4 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x122 he y3a8 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xf he y3a5 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x117 hb y3a6 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x8e ha y3a7 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 xe7 h9 y3a4 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xb2 he y3a8 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xd0 h7 y3a4 ffa fs3 fc0 sc0 ls0 ws0">≤<span class="_ _20"> </span><span class="ff8">n</span></div><div class="t m0 xec he y3a5 ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x83 hb y3a6 ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x151 ha y3a7 ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x105 h9 y3a4 ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x15a he y3a8 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xfa h9 y3a4 ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x134 he y3a8 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x144 h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">·<span class="ff6">-<span class="_ _16"> </span>Si<span class="_ _e"> </span><span class="ff8">a</span></span></div><div class="t m0 x12 ha y3aa ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x128 h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 x158 ha y3aa ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x157 h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≥<span class="_ _20"> </span><span class="ff8">a</span></div><div class="t m0 x12e he y3aa ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x11d h7 y3a9 ff6 fs3 fc0 sc0 ls0 ws0">y<span class="_ _c"> </span><span class="ff8">b</span></div><div class="t m0 x84 ha y3aa ff9 fs4 fc0 sc0 ls0 ws0">1</div><div class="t m0 x13f h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">≤<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x98 ha y3aa ff9 fs4 fc0 sc0 ls0 ws0">2</div><div class="t m0 x71 h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">≤<span class="_ _20"> </span><span class="ff8">...<span class="_ _20"> </span></span>≤<span class="_ _20"> </span><span class="ff8">b</span></div><div class="t m0 x159 he y3aa ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x10d h7 y3a9 ffa fs3 fc0 sc0 ls0 ws0">∈<span class="_ _20"> </span><span class="ff10">R</span></div><div class="t m0 xa5 h7 y3ab ff6 fs3 fc0 sc0 ls0 ws0">=<span class="_ _2a"></span><span class="ffa">⇒</span></div><div class="t m0 xa7 he y3ac ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x133 hb y3ad ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x34 ha y3ae ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x47 h9 y3ab ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x122 he y3af ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xf he y3ac ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x117 hb y3ad ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x8e ha y3ae ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 xe7 h9 y3ab ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 xb2 he y3af ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xd0 h7 y3ab ffa fs3 fc0 sc0 ls0 ws0">≥<span class="_ _20"> </span><span class="ff8">n</span></div><div class="t m0 xec he y3ac ffd fs4 fc0 sc0 ls0 ws0">n</div><div class="t m0 x83 hb y3ad ffb fs3 fc0 sc0 ls0 ws0">P</div><div class="t m0 x151 ha y3ae ffd fs4 fc0 sc0 ls0 ws0">i<span class="ff9">=1</span></div><div class="t m0 x105 h9 y3ab ff8 fs3 fc0 sc0 ls0 ws0">a</div><div class="t m0 x15a he y3af ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xfa h9 y3ab ff8 fs3 fc0 sc0 ls0 ws0">b</div><div class="t m0 x134 he y3af ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x9b h7 y3b0 ff6 fs3 fc0 sc0 ls0 ws0">Con<span class="_ _c"> </span>=<span class="_ _c"> </span>si<span class="_ _c"> </span>uno<span class="_ _c"> </span>de<span class="_ _c"> </span>los<span class="_ _c"> </span><span class="ff8">a</span></div><div class="t m0 xa0 he y3b1 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 x5 h7 y3b0 ff6 fs3 fc0 sc0 ls0 ws0">o<span class="_ _c"> </span><span class="ff8">b</span></div><div class="t m0 x62 he y3b1 ffd fs4 fc0 sc0 ls0 ws0">i</div><div class="t m0 xed h7 y3b0 ff6 fs3 fc0 sc0 ls0 ws0">es<span class="_ _c"> </span>constan<span class="_ _12"></span>te</div><div class="t m0 xd6 h7 y3b2 ff6 fs3 fc0 sc0 ls0 ws0">*<span class="_ _16"> </span>Estas<span class="_ _1e"> </span>2<span class="_ _1e"> </span>desigualdades<span class="_ _1e"> </span>son<span class="_ _21"> </span>tam<span class="_ _3"></span>bi´<span class="_ _a"></span>en<span class="_ _1e"> </span>muy<span class="_ _1e"> </span>“atractiv<span class="_ _b"></span>as”,<span class="_ _21"> </span>es<span class="_ _1e"> </span>p<span class="_ _24"></span>osible<span class="_ _21"> </span>que<span class="_ _1e"> </span>vistas<span class="_ _1e"> </span>as<span class="_ _10"></span>´<span class="_ _11"></span>ı<span class="_ _21"> </span>no<span class="_ _1e"> </span>se</div><div class="t m0 x5f h7 y3b3 ff6 fs3 fc0 sc0 ls0 ws0">en<span class="_ _3"></span>tiendan<span class="_"> </span>bien,<span class="_ _1e"> </span>p<span class="_ _24"></span>ero<span class="_"> </span>en<span class="_ _1e"> </span>la<span class="_ _21"> </span>Lecci´<span class="_ _d"></span>on<span class="_"> </span>#7<span class="_ _1e"> </span>las<span class="_"> </span>v<span class="_ _3"></span>eremos.<span class="_ _21"> </span>Igualmen<span class="_ _12"></span>te<span class="_ _21"> </span>existen<span class="_ _1e"> </span>otras<span class="_"> </span>desigual-</div><div class="t m0 x5f h7 y3b4 ff6 fs3 fc0 sc0 ls0 ws0">dades<span class="_ _c"> </span>notables<span class="_ _c"> </span>que<span class="_ _c"> </span>en<span class="_ _c"> </span>otro<span class="_ _c"> </span>momen<span class="_ _3"></span>to<span class="_ _c"> </span>notificaremos.<span class="_ _c"> </span>Por<span class="_ _e"> </span>ahora<span class="_ _c"> </span>estas<span class="_ _c"> </span>que<span class="_ _c"> </span>mostramos</div><div class="t m0 x5f h7 y3b5 ff6 fs3 fc0 sc0 ls0 ws0">resultan<span class="_ _c"> </span>una<span class="_ _c"> </span>herramienta<span class="_ _e"> </span>p<span class="_ _24"></span>o<span class="_ _24"></span>derosa<span class="_ _c"> </span>para<span class="_ _c"> </span>resolver<span class="_ _e"> </span>problemas<span class="_ _c"> </span>de<span class="_ _c"> </span>desigualdades.</div><div class="t m0 x7c h7 y3b6 ff6 fs3 fc0 sc0 ls0 ws0">Con<span class="_ _3"></span>tinuamos<span class="_ _e"> </span>pr´<span class="_ _a"></span>oximamen<span class="_ _3"></span>te.</div></div><div class="pi" data-data='{"ctm":[1.673203,0.000000,0.000000,1.673203,0.000000,0.000000]}'></div></div>
</div>
<div class="loading-indicator">
<img alt="" src=""/>
</div>
<a class="download-pdf-btn" href="./50 Lecciones de Matemática.pdf" download>Descargar PDF</a>
</body>
</html>